Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Rev. Soc. Bras. Med. Trop ; 56: e0552, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1441077

RESUMO

ABSTRACT Background: Ocular toxoplasmosis is the leading cause of infectious posterior uveitis worldwide, accounting for 30-50% of all cases in immunocompetent patients. Conventional treatment is associated with adverse effects and does not prevent recurrence. Intravitreal drug administration can improve disease outcomes and reduce side effects. Herein, we conducted a systematic review and meta-analysis on the efficacy of intravitreal injections for treating ocular toxoplasmosis. Methods: The systematic search was conducted using PubMed, SciELO, and Google Scholar with the descriptors "ocular toxoplasmosis" AND "intravitreal". We analyzed studies that met the inclusion criteria, i.e., experimental cases in patients treated intravitreally for ocular toxoplasmosis. Considering the systematic review, we focused on the number of intravitreal injections, the therapeutic drug class, and the presence of preexisting conditions. To assess the efficacy of intravitreal injections, a meta-analysis was performed using visual acuity, side effects, disease recurrence, and inflammatory responses as variables. Results: Intravitreal injection-induced side effects were rarely observed (0.49% [0.00, 1.51%] ). The use of antiparasitic and anti-inflammatory drugs afforded improved visual acuity (99.81% [98.60, 100.00%]) and marked effectiveness in treating ocular toxoplasmosis. Conclusions: Intravitreal injections may facilitate the successful treatment of ocular toxoplasmosis. However, clinicians should carefully evaluate the presence of preexisting conditions for ocular toxoplasmosis or previous diseases, as these can impact the decision to administer intravitreal injections.

2.
Cytotherapy ; 23(6): 500-509, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33752960

RESUMO

BACKGROUND AIMS: Corneal inflammation after alkali burns often results in vision loss due to corneal opacification and neovascularization. Mesenchymal stem cells (MSCs) and their secreted factors (secretome) have been studied for their anti-inflammatory and anti-angiogenic properties with encouraging results. However, topical instillation of MSCs or their secretome is often accompanied by issues related to delivery or rapid washout. Polyethylene glycol (PEG) and collagen are well-known biomaterials used extensively in scaffolds for tissue engineering. To effectively suppress alkaline burn-induced corneal injury, the authors proposed encapsulating MSCs within collagen gels cross-linked with multi-functional PEG-succinimidyl esters as a means to deliver the secretome of immobilized MSCs. METHODS: Human MSCs were added to a neutralized collagen solution and mixed with a solution of four-arm PEG-N-hydroxysuccinimide. An ex vivo organ culture was conducted using rabbit corneas injured by alkali burn. MSCs were encapsulated within PEG-collagen hydrogels and injected onto the wounded cornea immediately following alkali burn and washing. Photographs of the ocular surface were taken over a period of 7 days after the alkali burn and processed for immunohistochemical evaluation. Samples were split into three groups: injury without treatment, MSCs alone, and MSCs encapsulated within PEG-collagen hydrogels. RESULTS: All corneas in ex vivo organ culture lost their transparency immediately after alkali burn, and only the groups treated with MSCs and MSCs encapsulated within PEG-collagen hydrogels recovered some transparency after 7 days. Immunohistochemical analysis revealed increased expression of vimentin in the anterior corneal stroma of the group without treatment indicative of fibrotic healing, whereas less stromal vimentin was detected in the group containing MSCs encapsulated within the PEG-collagen hydrogels. CONCLUSIONS: PEG-collagen hydrogels enable the encapsulation of viable MSCs capable of releasing secreted factors onto the ocular surface. Encapsulating MSCs within PEG-collagen hydrogels may be a promising method for delivering their therapeutic benefits in cases of ocular inflammatory diseases, such as alkali burn injuries.


Assuntos
Células-Tronco Mesenquimais , Álcalis , Animais , Materiais Biocompatíveis , Colágeno , Córnea , Hidrogéis , Técnicas de Cultura de Órgãos , Polietilenoglicóis , Coelhos
3.
Acta Biomater ; 99: 247-257, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31539656

RESUMO

The therapeutic effects of secreted factors (secretome) produced by bone marrow-derived human mesenchymal stem cells (MSCs) were evaluated as a function of their growth in 2D culture conditions and on 3D electrospun fiber scaffolds. Electrospun fiber scaffolds composed of polycaprolactone and gelatin were fabricated to provide a 3D microenvironment for MSCs, and their mechanical properties were optimized to be similar to corneal tissue. The secretome produced by the MSCs cultured on 3D fiber matrices versus 2D culture dishes were analyzed using a Luminex immunoassay, and the secretome of MSCs cultured on the 3D versus 2D substrates showed substantial compositional differences. Concentrations of factors such as HGF and ICAM-1 were increased over 5 times in 3D cultures compared to 2D cultures. In vitro proliferation and scratch-based wound healing assays were performed to compare the effects of the secretome on corneal fibroblast cells (CFCs) when delivered synchronously from co-cultured MSCs through a trans-well co-culture system versus asynchronously after harvesting the factors separately and adding them to the media. Cell viability of CFCs was sustained for 6 days when co-cultured with MSCs seeded on the fibers but decreased with time under other conditions. Scratch assays showed 95% closure at 48 h when CFCs were co-cultured with MSCs seeded on fibers, while the control group only exhibited 50% closure at 48 h. Electrospun fibers seeded with MSCs were then applied to a rabbit corneal organ culture system, and MSCs seeded on fibers promoted faster epithelialization and less scarring. Corneas were fixed and stained for alpha smooth muscle actin (α-SMA), and then analyzed by confocal microscopy. Immunostaining showed that expression of α-SMA was lower in corneas treated with MSCs seeded on fibers, suggesting suppression of myofibroblastic transformation. MSCs cultured on electrospun fibers facilitate wound healing in CFCs and on explanted corneas through differential secretome profiles compared to MSCs cultured on 2D substrates. Future work is merited to further understand the nature and basis of these differences and their effects in animal models. STATEMENT OF SIGNIFICANCE: Previous studies have shown that the secretome of bone marrow-derived mesenchymal stem cells (MSC) is promotes corneal wound healing by facilitating improved wound closure rates and reduction of scarring and neovascularization. The present research is significant because it provides evidence for the modulation of the secretome as a function of the MSC culture environment. This leads to differential expression of therapeutic factors secreted, which can impact corneal epithelial and stromal healing after severe injury. In addition, this article shows that co-continuous delivery of the MSC secretome improves cell migration and proliferation over aliquoted delivery, and that MSCs grown on three-dimensional electrospun fiber constructs may provide a favorable microenvironment for cultured MSCs and as a carrier to deliver their secreted factors to the ocular surface.


Assuntos
Células da Medula Óssea/citologia , Córnea/patologia , Lesões da Córnea/terapia , Células-Tronco Mesenquimais/citologia , Engenharia Tecidual/métodos , Cicatrização , Actinas/metabolismo , Animais , Diferenciação Celular , Sobrevivência Celular , Técnicas de Cocultura , Córnea/metabolismo , Fibroblastos/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Imageamento Tridimensional , Técnicas In Vitro , Molécula 1 de Adesão Intercelular/metabolismo , Microscopia Confocal , Miócitos de Músculo Liso/metabolismo , Técnicas de Cultura de Órgãos , Coelhos , Regeneração , Estresse Mecânico , Alicerces Teciduais
4.
Stem Cells Transl Med ; 8(5): 478-489, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30644653

RESUMO

Severe corneal injuries often result in permanent vision loss and remain a clinical challenge. Human bone marrow-derived mesenchymal stem cells (MSCs) and their secreted factors (secretome) have been studied for their antiscarring, anti-inflammatory, and antiangiogeneic properties. We aimed to deliver lyophilized MSC secretome (MSC-S) within a viscoelastic gel composed of hyaluronic acid (HA) and chondroitin sulfate (CS) as a way to enhance corneal re-epithelialization and reduce complications after mechanical and chemical injuries of the cornea. We hypothesized that delivering MSC-S within HA/CS would have improved wound healing effects compared the with either MSC-S or HA/CS alone. The results showed that a once-daily application of MSC-S in HA/CS enhances epithelial cell proliferation and wound healing after injury to the cornea. It also reduced scar formation, neovascularization, and hemorrhage after alkaline corneal burns. We found that combining MSC-S and HA/CS increased the expression of CD44 receptors colocalized with HA, suggesting that the observed therapeutic effects between the MSC-S and HA/CS are in part mediated by CD44 receptor upregulation and activation by HA. The results from this study demonstrate a reproducible and efficient approach for delivering the MSC-S to the ocular surface for treatment of severe corneal injuries. Stem Cells Translational Medicine 2019;8:478-489.


Assuntos
Córnea/patologia , Lesões da Córnea/terapia , Células-Tronco Mesenquimais/metabolismo , Proteoma/metabolismo , Substâncias Viscoelásticas/uso terapêutico , Cicatrização/fisiologia , Animais , Feminino , Humanos , Ratos , Ratos Sprague-Dawley , Substâncias Viscoelásticas/farmacologia
5.
J Pharm Sci ; 104(11): 3731-42, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26178442

RESUMO

In this study, the methotrexate (MTX) was incorporated into the poly(ε-caprolactone) (PCL) to design implants (MTX PCL implants) aiming the local treatment of inflammatory angiogenesis diseases without causing systemic side effects. Sponges were inserted into the subcutaneous tissue of mice as a framework for fibrovascular tissue growth. After 4 days, MTX PCL implants were also introduced, and anti-inflammatory, antiangiogenic, and antifibrogenic activities of the MTX were determined. MTX reduced the vascularization (hemoglobin content), the neutrophil, and monocyte/macrophage infiltration (MPO and NAG activities, respectively), and the collagen deposition in sponges. MTX reduced tumor necrosis factor-α and IL-6 levels, demonstrating its local antiangiogenic and anti-inflammatory effects. Furthermore, hepatotoxicity, nephrotoxicity, and myelotoxicity, which could be induced by the drug, were evaluated. However, MTX did not promote toxicity to these organs, as the levels of AST and ALT (hepatic markers) and creatinine and urea (renal markers) were not increased, and the complete blood count was not decreased. In conclusion, MTX PCL implants demonstrated to be effective in regulating the components of the inflammatory angiogenesis locally established, and presented an acceptable safety profile.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Preparações de Ação Retardada/química , Metotrexato/administração & dosagem , Poliésteres/química , Inibidores da Angiogênese/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Colágeno/análise , Citocinas/análise , Sistemas de Liberação de Medicamentos , Imunossupressores/administração & dosagem , Imunossupressores/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neovascularização Patológica/tratamento farmacológico , Próteses e Implantes
6.
J Pharm Sci ; 104(11): 3731-42, 2015 11.
Artigo em Inglês | MEDLINE | ID: mdl-27524686

RESUMO

In this study, the methotrexate (MTX) was incorporated into the poly(e-caprolactone) (PCL) to design implants (MTX PCL implants) aiming the local treatment of inflammatory angiogenesis diseases without causing systemic side effects. Sponges were inserted into the subcutaneous tissue of mice as a framework for fibrovascular tissue growth. After 4days, MTX PCL implants were also introduced, and anti-inflammatory, antiangiogenic, and antifibrogenic activities of the MTX were determined. MTX reduced the vascularization (hemoglobin content), the neutrophil, and monocyte/macrophage infiltration (MPO and NAG activities, respectively), and the collagen deposition in sponges. MTX reduced tumor necrosis factor-a and IL-6 levels, demonstrating its local antiangiogenic and anti-inflammatory effects. Furthermore, hepatotoxicity, nephrotoxicity, and myelotoxicity, which could be induced by the drug, were evaluated. However, MTX did not promote toxicity to these organs, as the levels of AST and ALT (hepatic markers) and creatinine and urea (renal markers) were not increased, and the complete blood count was not decreased. In conclusion, MTX PCL implants demonstrated to be effective in regulating the components of the inflammatory angiogenesis locally established, and presented an acceptable safety profile. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3731-3742, 2015.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Anti-Inflamatórios/administração & dosagem , Metotrexato/administração & dosagem , Poliésteres/química , Acetilglucosaminidase/metabolismo , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/toxicidade , Animais , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/toxicidade , Proliferação de Células , Colágeno/química , Sistemas de Liberação de Medicamentos , Implantes de Medicamento , Liberação Controlada de Fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-6/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Masculino , Metotrexato/farmacologia , Metotrexato/toxicidade , Camundongos , Camundongos Endogâmicos BALB C , Neovascularização Patológica/tratamento farmacológico , Infiltração de Neutrófilos/efeitos dos fármacos , Peroxidase/metabolismo , Distribuição Tecidual , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA