Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Microorganisms ; 9(6)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073568

RESUMO

The Rickettsiales Ehrlichia ruminantium, the causal agent of the fatal tick-borne disease Heartwater, induces severe damage to the vascular endothelium in ruminants. Nevertheless, E. ruminantium-induced pathobiology remains largely unknown. Our work paves the way for understanding this phenomenon by using quantitative proteomic analyses (2D-DIGE-MS/MS, 1DE-nanoLC-MS/MS and biotin-nanoUPLC-MS/MS) of host bovine aorta endothelial cells (BAE) during the in vitro bacterium intracellular replication cycle. We detect 265 bacterial proteins (including virulence factors), at all time-points of the E. ruminantium replication cycle, highlighting a dynamic bacterium-host interaction. We show that E. ruminantium infection modulates the expression of 433 host proteins: 98 being over-expressed, 161 under-expressed, 140 detected only in infected BAE cells and 34 exclusively detected in non-infected cells. Cystoscape integrated data analysis shows that these proteins lead to major changes in host cell immune responses, host cell metabolism and vesicle trafficking, with a clear involvement of inflammation-related proteins in this process. Our findings led to the first model of E. ruminantium infection in host cells in vitro, and we highlight potential biomarkers of E. ruminantium infection in endothelial cells (such as ROCK1, TMEM16K, Albumin and PTPN1), which may be important to further combat Heartwater, namely by developing non-antibiotic-based strategies.

2.
Artigo em Inglês | MEDLINE | ID: mdl-29354598

RESUMO

The tropical bont tick, Amblyomma variegatum, is a tick species of veterinary importance and is considered as one of major pest of ruminants in Africa and in the Caribbean. It causes direct skin lesions, transmits heartwater, and reactivates bovine dermatophilosis. Tick saliva is reported to affect overall host responses through immunomodulatory and anti-inflammatory molecules, among other bioactive molecules. The general objective of this study was to better understand the role of saliva in interaction between the Amblyomma tick and the host using cellular biology approaches and proteomics, and to discuss its impact on disease transmission and/or activation. We first focused on the immuno-modulating effects of semi-fed A. variegatum female saliva on bovine peripheral blood mononuclear cells (PBMC) and monocyte-derived macrophages in vitro. We analyzed its immuno-suppressive properties by measuring the effect of saliva on PBMC proliferation, and observed a significant decrease in ConA-stimulated PBMC lymphoproliferation. We then studied the effect of saliva on bovine macrophages using flow cytometry to analyze the expression of MHC-II and co-stimulation molecules (CD40, CD80, and CD86) and by measuring the production of nitric oxide (NO) and pro- or anti-inflammatory cytokines. We observed a significant decrease in the expression of MHC-II, CD40, and CD80 molecules, associated with decreased levels of IL-12-p40 and TNF-α and increased level of IL-10, which could explain the saliva-induced modulation of NO. To elucidate these immunomodulatory effects, crude saliva proteins were analyzed using proteomics with an Orbitrap Elite mass spectrometer. Among the 336 proteins identified in A. variegatum saliva, we evidenced bioactive molecules exhibiting anti-inflammatory, immuno-modulatory, and anti-oxidant properties (e.g., serpins, phospholipases A2, heme lipoprotein). We also characterized an intriguing ubiquitination complex that could be involved in saliva-induced immune modulation of the host. We propose a model for the interaction between A. variegatum saliva and host immune cells that could have an effect during tick feeding by favoring pathogen dissemination or activation by reducing the efficiency of host immune response to the corresponding tick-borne diseases.


Assuntos
Fatores Imunológicos/metabolismo , Ixodidae , Leucócitos Mononucleares/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Saliva/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Animais , Antígenos CD/análise , Bovinos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Citocinas/análise , Antígenos de Histocompatibilidade Classe II/análise , Leucócitos Mononucleares/imunologia , Macrófagos/imunologia , Óxido Nítrico/análise
3.
Genome Biol Evol ; 6(4): 932-48, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24723731

RESUMO

Deinococcus deserti is a desiccation- and radiation-tolerant desert bacterium. Differential RNA sequencing (RNA-seq) was performed to explore the specificities of its transcriptome. Strikingly, for 1,174 (60%) mRNAs, the transcription start site was found exactly at (916 cases, 47%) or very close to the translation initiation codon AUG or GUG. Such proportion of leaderless mRNAs, which may resemble ancestral mRNAs, is unprecedented for a bacterial species. Proteomics showed that leaderless mRNAs are efficiently translated in D. deserti. Interestingly, we also found 173 additional transcripts with a 5'-AUG or 5'-GUG that would make them competent for ribosome binding and translation into novel small polypeptides. Fourteen of these are predicted to be leader peptides involved in transcription attenuation. Another 30 correlated with new gene predictions and/or showed conservation with annotated and nonannotated genes in other Deinococcus species, and five of these novel polypeptides were indeed detected by mass spectrometry. The data also allowed reannotation of the start codon position of 257 genes, including several DNA repair genes. Moreover, several novel highly radiation-induced genes were found, and their potential roles are discussed. On the basis of our RNA-seq and proteogenomics data, we propose that translation of many of the novel leaderless transcripts, which may have resulted from single-nucleotide changes and maintained by selective pressure, provides a new explanation for the generation of a cellular pool of small peptides important for protection of proteins against oxidation and thus for radiation/desiccation tolerance and adaptation to harsh environmental conditions.


Assuntos
Adaptação Fisiológica/genética , Proteínas de Bactérias , Deinococcus/fisiologia , Evolução Molecular , RNA Bacteriano , RNA Mensageiro , Análise de Sequência de RNA , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Dados de Sequência Molecular , Proteômica , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tolerância a Radiação/fisiologia
4.
Mol Cell Proteomics ; 13(5): 1369-81, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24536027

RESUMO

Given the ease of whole genome sequencing with next-generation sequencers, structural and functional gene annotation is now purely based on automated prediction. However, errors in gene structure are frequent, the correct determination of start codons being one of the main concerns. Here, we combine protein N termini derivatization using (N-Succinimidyloxycarbonylmethyl)tris(2,4,6-trimethoxyphenyl)phosphonium bromide (TMPP Ac-OSu) as a labeling reagent with the COmbined FRActional DIagonal Chromatography (COFRADIC) sorting method to enrich labeled N-terminal peptides for mass spectrometry detection. Protein digestion was performed in parallel with three proteases to obtain a reliable automatic validation of protein N termini. The analysis of these N-terminal enriched fractions by high-resolution tandem mass spectrometry allowed the annotation refinement of 534 proteins of the model marine bacterium Roseobacter denitrificans OCh114. This study is especially efficient regarding mass spectrometry analytical time. From the 534 validated N termini, 480 confirmed existing gene annotations, 41 highlighted erroneous start codon annotations, five revealed totally new mis-annotated genes; the mass spectrometry data also suggested the existence of multiple start sites for eight different genes, a result that challenges the current view of protein translation initiation. Finally, we identified several proteins for which classical genome homology-driven annotation was inconsistent, questioning the validity of automatic annotation pipelines and emphasizing the need for complementary proteomic data. All data have been deposited to the ProteomeXchange with identifier PXD000337.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Peptídeos/química , Roseobacter/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sequência de Bases , Cromatografia , Genoma Bacteriano , Anotação de Sequência Molecular , Dados de Sequência Molecular , Compostos Organofosforados/química , Compostos Organofosforados/metabolismo , Peptídeos/genética , Proteômica , Roseobacter/classificação , Roseobacter/metabolismo , Espectrometria de Massas em Tandem
5.
Mol Cell Proteomics ; 9(2): 415-26, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19875382

RESUMO

Deinococcaceae are a family of extremely radiation-tolerant bacteria that are currently subjected to numerous studies aimed at understanding the molecular mechanisms for such radiotolerance. To achieve a comprehensive and accurate annotation of the Deinococcus deserti genome, we performed an N terminus-oriented characterization of its proteome. For this, we used a labeling reagent, N-tris(2,4,6-trimethoxyphenyl)phosphonium acetyl succinimide, to selectively derivatize protein N termini. The large scale identification of N-tris(2,4,6-trimethoxyphenyl)phosphonium acetyl succinimide-modified N-terminal-most peptides by shotgun liquid chromatography-tandem mass spectrometry analysis led to the validation of 278 and the correction of 73 translation initiation codons in the D. deserti genome. In addition, four new genes were detected, three located on the main chromosome and one on plasmid P3. We also analyzed signal peptide cleavages on a genome-wide scale. Based on comparative proteogenomics analysis, we propose a set of 137 corrections to improve Deinococcus radiodurans and Deinococcus geothermalis gene annotations. Some of these corrections affect important genes involved in DNA repair mechanisms such as polA, ligA, and ddrB. Surprisingly, experimental evidences were obtained indicating that DnaA (the protein involved in the DNA replication initiation process) and RpsL (the S12 ribosomal conserved protein) translation is initiated in Deinococcaceae from non-canonical codons (ATC and CTG, respectively). Such use may be the basis of specific regulation mechanisms affecting replication and translation. We also report the use of non-conventional translation initiation codons for two other genes: Deide_03051 and infC. Whether such use of non-canonical translation initiation codons is much more frequent than for other previously reported bacterial phyla or restricted to Deinococcaceae remains to be investigated. Our results demonstrate that predicting translation initiation codons is still difficult for some bacteria and that proteomics-based refinement of genome annotations may be helpful in such cases.


Assuntos
Códon de Iniciação/genética , Deinococcus/genética , Genoma Bacteriano/genética , Biossíntese de Proteínas/genética , Proteômica/métodos , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Bases de Dados de Proteínas , Genes Bacterianos , Dados de Sequência Molecular , Compostos Organofosforados/química , Compostos Organofosforados/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Sinais Direcionadores de Proteínas , Homologia de Sequência de Aminoácidos , Coloração e Rotulagem
6.
J Biol Chem ; 279(35): 37142-52, 2004 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-15210688

RESUMO

In sequenced genomes, genes belonging to the cluster of orthologous group COG1041 are exclusively, and almost ubiquitously, found in Eukaryota and Archaea but never in Bacteria. The corresponding gene products exhibit a characteristic Rossmann fold, S-adenosylmethionine-dependent methyltransferase domain in the C terminus and a predicted RNA-binding THUMP (thiouridine synthases, RNA methyltransferases, and pseudouridine synthases) domain in the N terminus. Recombinant PAB1283 protein from the archaeon Pyrococcus abyssi GE5, a member of COG1041, was purified and shown to behave as a monomeric 39-kDa entity. This protein (EC 2.1.1.32), now renamed (Pab)Trm-G10, which is extremely thermostable, forms a 1:1 complex with tRNA and catalyzes the adenosylmethionine-dependent methylation of the exocyclic amino group (N(2)) of guanosine located at position 10. Depending on the experimental conditions used, as well as the tRNA substrate tested, the enzymatic reaction leads to the formation of either N(2)-monomethyl (m(2)G) or N(2)-dimethylguanosine (m(2)(2)G). Interestingly, (Pab)Trm-G10 exhibits different domain organization and different catalytic site architecture from another, earlier characterized, tRNA-dimethyltransferase from Pyrococcus furiosus ((Pfu)Trm-G26, also known as (Pfu)Trm1, a member of COG1867) that catalyzes an identical two-step dimethylation of guanosine but at position 26 in tRNAs and is also conserved among all sequenced Eukaryota and Archaea. The co-occurrence of these two guanosine dimethyltransferases in both Archaea and Eukaryota but not in Bacteria is a hallmark of distinct tRNAs maturation strategies between these domains of life.


Assuntos
Guanosina/química , Metiltransferases/química , RNA de Transferência/química , S-Adenosilmetionina/química , tRNA Metiltransferases/química , Sequência de Aminoácidos , Archaea , Varredura Diferencial de Calorimetria , Catálise , Domínio Catalítico , Cromatografia em Gel , Metilação de DNA , Bases de Dados como Assunto , Eletroforese em Gel de Poliacrilamida , Células Eucarióticas/metabolismo , Metilação , Modelos Moleculares , Dados de Sequência Molecular , Plasmídeos/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , RNA/química , RNA de Transferência/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Temperatura , Fatores de Tempo
7.
J Biol Chem ; 278(33): 31078-87, 2003 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12756245

RESUMO

Although coenzymeA (CoA) is essential in numerous metabolic pathways in all living cells, molecular characterization of the CoA biosynthetic pathway in Archaea remains undocumented. Archaeal genomes contain detectable homologues for only three of the five steps of the CoA biosynthetic pathway characterized in Eukarya and Bacteria. In case of phosphopantetheine adenylyltransferase (PPAT) (EC 2.7.7.3), the putative archaeal enzyme exhibits significant sequence similarity only with its eukaryotic homologs, an unusual situation for a protein involved in a central metabolic pathway. We have overexpressed in Escherichia coli, purified, and characterized this putative PPAT from the hyperthermophilic archaeon Pyrococcus abyssi (PAB0944). Matrix-assisted laser desorption ionization-time of flight mass spectrometry and high performance liquid chromatography measurements are consistent with the presence of a dephospho-CoA (dPCoA) molecule tightly bound to the polypeptide. The protein indeed catalyzes the synthesis of dPCoA from 4'-phosphopantetheine and ATP, as well as the reverse reaction. The presence of dPCoA stabilizes PAB0944, as it induces a shift from 76 to 82 degrees C of the apparent Tm measured by differential scanning microcalorimetry. Potassium glutamate was found to stabilize the protein at 400 mm. The enzyme behaves as a monomeric protein. Although only distantly related, secondary structure prediction indicates that archaeal and eukaryal PPAT belong to the same nucleotidyltransferase superfamily of bacterial PPAT. The existence of operational proteins highly conserved between Archaea and Eukarya involved in a central metabolic pathway challenge evolutionary scenarios in which eukaryal operational proteins are strictly of bacterial origin.


Assuntos
Coenzima A/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Pyrococcus/enzimologia , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/isolamento & purificação , Proteínas Arqueais/metabolismo , Varredura Diferencial de Calorimetria , Escherichia coli , Células Eucarióticas/enzimologia , Histidina , Dados de Sequência Molecular , Nucleotidiltransferases/química , Filogenia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Pyrococcus/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA