Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 6(21): eaaz4707, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32494739

RESUMO

Vinculin binds unfolded talin domains in focal adhesions, which recruits actin filaments to reinforce the mechanical coupling of this organelle. However, it remains unknown how this interaction is regulated and its impact on the force transmission properties of this mechanotransduction pathway. Here, we use magnetic tweezers to measure the interaction between vinculin head and the talin R3 domain under physiological forces. For the first time, we resolve individual binding events as a short contraction of the unfolded talin polypeptide caused by the reformation of the vinculin-binding site helices, which dictates a biphasic mechanism that regulates this interaction. Force favors vinculin binding by unfolding talin and exposing the vinculin-binding sites; however, the coil-to-helix contraction introduces an energy penalty that increases with force, defining an optimal binding regime. This mechanism implies that the talin-vinculin-actin association could operate as a negative feedback mechanism to stabilize force on focal adhesions.

2.
Nat Commun ; 11(1): 2060, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32345978

RESUMO

Single-molecule methods using recombinant proteins have generated transformative hypotheses on how mechanical forces are generated and sensed in biological tissues. However, testing these mechanical hypotheses on proteins in their natural environment remains inaccesible to conventional tools. To address this limitation, here we demonstrate a mouse model carrying a HaloTag-TEV insertion in the protein titin, the main determinant of myocyte stiffness. Using our system, we specifically sever titin by digestion with TEV protease, and find that the response of muscle fibers to length changes requires mechanical transduction through titin's intact polypeptide chain. In addition, HaloTag-based covalent tethering enables examination of titin dynamics under force using magnetic tweezers. At pulling forces < 10 pN, titin domains are recruited to the unfolded state, and produce 41.5 zJ mechanical work during refolding. Insertion of the HaloTag-TEV cassette in mechanical proteins opens opportunities to explore the molecular basis of cellular force generation, mechanosensing and mechanotransduction.


Assuntos
Conectina/metabolismo , Endopeptidases/genética , Especificidade de Órgãos , Animais , Fenômenos Biomecânicos , Conectina/química , Feminino , Proteínas Imobilizadas/metabolismo , Magnetismo , Camundongos , Músculos/metabolismo , Músculos/ultraestrutura , Pinças Ópticas , Fenótipo , Dobramento de Proteína , Análise Espectral
3.
Cell Rep ; 27(6): 1836-1847.e4, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067467

RESUMO

The delivery of mechanical power, a crucial component of animal motion, is constrained by the universal compromise between the force and the velocity of its constituent molecular systems. While the mechanisms of force generation have been studied at the single molecular motor level, there is little understanding of the magnitude of power that can be generated by folding proteins. Here, we use single-molecule force spectroscopy techniques to measure the force-velocity relation of folding titin domains that contain single internal disulfide bonds, a common feature throughout the titin I-band. We find that formation of the disulfide regulates the peak power output of protein folding in an all-or-none manner, providing at 6.0 pN, for example, a boost from 0 to 6,000 zW upon oxidation. This mechanism of power generation from protein folding is of great importance for muscle, where titin domains may unfold and refold with each extension and contraction of the sarcomere.


Assuntos
Conectina/química , Conectina/metabolismo , Dobramento de Proteína , Fenômenos Biomecânicos , Dissulfetos/metabolismo , Modelos Biológicos , Chaperonas Moleculares/metabolismo , Oxirredução , Oxirredutases/metabolismo , Peptídeos/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Domínios Proteicos
4.
Proc Natl Acad Sci U S A ; 115(37): 9222-9227, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30150415

RESUMO

Bacteria anchor to their host cells through their adhesive pili, which must resist the large mechanical stresses induced by the host as it attempts to dislodge the pathogens. The pili of gram-positive bacteria are constructed as a single polypeptide made of hundreds of pilin repeats, which contain intramolecular isopeptide bonds strategically located in the structure to prevent their unfolding under force, protecting the pilus from degradation by extant proteases and oxygen radicals. Here, we demonstrate the design of a short peptide that blocks the formation of the isopeptide bond present in the pilin Spy0128 from the human pathogen Streptococcus pyogenes, resulting in mechanically labile pilin domains. We use a combination of protein engineering and atomic-force microscopy force spectroscopy to demonstrate that the peptide blocks the formation of the native isopeptide bond and compromises the mechanics of the domain. While an intact Spy0128 is inextensible at any force, peptide-modified Spy0128 pilins readily unfold at very low forces, marking the abrogation of the intramolecular isopeptide bond as well as the absence of a stable pilin fold. We propose that isopeptide-blocking peptides could be further developed as a type of highly specific antiadhesive antibiotics to treat gram-positive pathogens.


Assuntos
Antibacterianos/química , Proteínas de Fímbrias/antagonistas & inibidores , Proteínas de Fímbrias/química , Peptídeos/química , Dobramento de Proteína , Streptococcus pyogenes/química , Antibacterianos/farmacologia , Proteínas de Fímbrias/metabolismo , Humanos , Peptídeos/farmacologia , Domínios Proteicos , Estabilidade Proteica , Streptococcus pyogenes/metabolismo , Streptococcus pyogenes/patogenicidade
5.
J Phys Chem Lett ; 9(16): 4707-4713, 2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30058807

RESUMO

Single-molecule force spectroscopy utilizes polyproteins, which are composed of tandem modular domains, to study their mechanical and structural properties. Under the application of external load, the polyproteins respond by unfolding and refolding domains to acquire the most favored extensibility. However, unlike single-domain proteins, the sequential unfolding of the each domain modifies the free energy landscape (FEL) of the polyprotein nonlinearly. Here we use force-clamp (FC) spectroscopy to measure unfolding and collapse-refolding dynamics of polyubiquitin and poly(I91). Their reconstructed unfolding FEL involves hundreds of kB T in accumulating work performed against conformational entropy, which dwarfs the ∼30 kB T that is typically required to overcome the free energy difference of unfolding. We speculate that the additional entropic energy caused by segmentation of the polyprotein to individual proteins plays a crucial role in defining the "shock absorber" properties of elastic proteins such as the giant muscle protein titin.

6.
Nat Commun ; 9(1): 185, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29330363

RESUMO

The response of titin to mechanical forces is a major determinant of the function of the heart. When placed under a pulling force, the unstructured regions of titin uncoil while its immunoglobulin (Ig) domains unfold and extend. Using single-molecule atomic force microscopy, we show that disulfide isomerization reactions within Ig domains enable a third mechanism of titin elasticity. Oxidation of Ig domains leads to non-canonical disulfide bonds that stiffen titin while enabling force-triggered isomerization reactions to more extended states of the domains. Using sequence and structural analyses, we show that 21% of titin's I-band Ig domains contain a conserved cysteine triad that can engage in disulfide isomerization reactions. We propose that imbalance of the redox status of myocytes can have immediate consequences for the mechanical properties of the sarcomere via alterations of the oxidation state of titin domains.


Assuntos
Conectina/química , Dissulfetos/química , Elasticidade , Domínios de Imunoglobulina , Animais , Conectina/metabolismo , Cisteína/química , Cisteína/metabolismo , Isomerismo , Microscopia de Força Atômica , Modelos Moleculares , Oxirredução , Dobramento de Proteína , Desdobramento de Proteína , Coelhos , Sarcômeros/química , Sarcômeros/metabolismo
7.
J Phys Chem Lett ; 8(15): 3642-3647, 2017 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-28723106

RESUMO

Protein aging may manifest as a mechanical disease that compromises tissue elasticity. As proved recently, while proteins respond to changes in force with an instantaneous elastic recoil followed by a folding contraction, aged proteins break bad, becoming unstructured polymers. Here, we explain this phenomenon in the context of a free energy model, predicting the changes in the folding landscape of proteins upon oxidative aging. Our findings validate that protein folding under force is constituted by two separable components, polymer properties and hydrophobic collapse, and demonstrate that the latter becomes irreversibly blocked by oxidative damage. We run Brownian dynamics simulations on the landscape of protein L octamer, reproducing all experimental observables, for a naive and damaged polyprotein. This work provides a unique tool to understand the evolving free energy landscape of elastic proteins upon physiological changes, opening new perspectives to predict age-related diseases in tissues.

8.
Proc Natl Acad Sci U S A ; 113(9): 2490-5, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26884173

RESUMO

Pathogenic bacteria adhere despite severe mechanical perturbations induced by the host, such as coughing. In Gram-positive bacteria, extracellular protein appendages termed pili are necessary for adherence under mechanical stress. However, little is known about the behavior of Gram-positive pili under force. Here, we demonstrate a mechanism by which Gram-positive pili are able to dissipate mechanical energy through mechanical unfolding and refolding of isopeptide bond-delimited polypeptide loops present in Ig-type CnaA domains. Using single-molecule force spectroscopy, we find that these loops of the pilus subunit SpaA of the SpaA-type pilus from Corynebacterium diphtheriae and FimA of the type 2 pilus from Actinomyces oris unfold and extend at forces that are the highest yet reported for globular proteins. Loop refolding is limited by the hydrophobic collapse of the polypeptide and occurs in milliseconds. Remarkably, both SpaA and FimA initially refold to mechanically weaker intermediates that recover strength with time or ligand binding. Based on the high force extensibility, CnaA-containing pili can dissipate ∼28-fold as much energy compared with their inextensible counterparts before reaching forces sufficient to cleave covalent bonds. We propose that efficient mechanical energy dissipation is key for sustained bacterial attachment against mechanical perturbations.


Assuntos
Proteínas de Bactérias/química , Fímbrias Bacterianas/química , Actinomyces/química , Corynebacterium diphtheriae/química
9.
Cell Rep ; 14(6): 1339-1347, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26854230

RESUMO

Current theories of muscle contraction propose that the power stroke of a myosin motor is the sole source of mechanical energy driving the sliding filaments of a contracting muscle. These models exclude titin, the largest protein in the human body, which determines the passive elasticity of muscles. Here, we show that stepwise unfolding/folding of titin immunoglobulin (Ig) domains occurs in the elastic I band region of intact myofibrils at physiological sarcomere lengths and forces of 6-8 pN. We use single-molecule techniques to demonstrate that unfolded titin Ig domains undergo a spontaneous stepwise folding contraction at forces below 10 pN, delivering up to 105 zJ of additional contractile energy, which is larger than the mechanical energy delivered by the power stroke of a myosin motor. Thus, it appears inescapable that folding of titin Ig domains is an important, but as yet unrecognized, contributor to the force generated by a contracting muscle.


Assuntos
Conectina/química , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Miosinas/química , Sarcômeros/fisiologia , Animais , Fenômenos Biomecânicos , Conectina/fisiologia , Elasticidade , Humanos , Imunoglobulina G/química , Imunoglobulina G/fisiologia , Mecanotransdução Celular , Músculo Esquelético/ultraestrutura , Miosinas/fisiologia , Domínios Proteicos , Dobramento de Proteína , Coelhos , Sarcômeros/ultraestrutura
10.
J Biol Chem ; 291(8): 4226-35, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26703476

RESUMO

Cataract is a protein misfolding disease where the size of the aggregate is directly related to the severity of the disorder. However, the molecular mechanisms that trigger the onset of aggregation remain unknown. Here we use a combination of protein engineering techniques and single-molecule force spectroscopy using atomic force microscopy to study the individual unfolding pathways of the human γD-crystallin, a multidomain protein that must remain correctly folded during the entire lifetime to guarantee lens transparency. When stretching individual polyproteins containing two neighboring HγD-crystallin monomers, we captured an anomalous misfolded conformation in which the ß1 and ß2 strands of the N terminus domain of two adjacent monomers swap. This experimentally elusive domain-swapped conformation is likely to be responsible for the increase in molecular aggregation that we measure in vitro. Our results demonstrate the power of force spectroscopy at capturing rare misfolded conformations with potential implications for the understanding of the molecular onset of protein aggregation.


Assuntos
Agregados Proteicos , Dobramento de Proteína , gama-Cristalinas/química , Humanos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , gama-Cristalinas/metabolismo
11.
Macromol Mater Eng ; 300(3): 369-376, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25960689

RESUMO

We present a novel tensile testing system optimized for the mechanical loading of microliter volume protein hydrogels. Our apparatus incorporates a voice coil servoactuator capable of carrying out fixed velocity extension-relaxation cycles as well as extension step protocols. The setup is equipped with an acrylic cuvette permitting day-long incubations in solution. To demonstrate the functionality of the device, we photochemically crosslinked polyproteins of the I91 immunoglobulin domain from the muscle protein titin to create solid hydrogels that recapitulate elastic properties of muscle. We present data from tensile tests of these low volume biomaterials that support protein unfolding as a main determinant of the elasticity of protein hydrogels. Our results demonstrate the potential use of protein hydrogels as biomaterials whose elastic properties dynamically respond to their environment.

12.
ACS Nano ; 9(4): 3996-4005, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25840594

RESUMO

Enzyme-substrate binding is a dynamic process intimately coupled to protein structural changes, which in turn changes the unfolding energy landscape. By the use of single-molecule force spectroscopy (SMFS), we characterize the open-to-closed conformational transition experienced by the hyperthermophilic adenine diphosphate (ADP)-dependent glucokinase from Thermococcus litoralis triggered by the sequential binding of substrates. In the absence of substrates, the mechanical unfolding of TlGK shows an intermediate 1, which is stabilized in the presence of Mg·ADP(-), the first substrate to bind to the enzyme. However, in the presence of this substrate, an additional unfolding event is observed, intermediate 1*. Finally, in the presence of both substrates, the unfolding force of intermediates 1 and 1* increases as a consequence of the domain closure. These results show that SMFS can be used as a powerful experimental tool to investigate binding mechanisms of different enzymes with more than one ligand, expanding the repertoire of protocols traditionally used in enzymology.


Assuntos
Glucoquinase/química , Glucoquinase/metabolismo , Fenômenos Mecânicos , Difosfato de Adenosina/metabolismo , Inibidores Enzimáticos/farmacologia , Estabilidade Enzimática , Glucoquinase/antagonistas & inibidores , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Desdobramento de Proteína , Thermococcus/enzimologia
13.
Biochem Biophys Res Commun ; 460(2): 434-8, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25796331

RESUMO

Recent studies have provided a theoretical framework for including entropic elasticity in the free energy landscape of proteins under mechanical force. Accounting for entropic elasticity using polymer physics models has helped explain the hopping behavior seen in single molecule experiments in the low force regime. Here, we expand on the construction of the free energy of a single protein domain under force proposed by Berkovich et al. to provide a free energy landscape for N tandem domains along a continuous polypeptide. Calculation of the free energy of individual domains followed by their concatenation provides a continuous free energy landscape whose curvature is dominated by the worm-like chain at forces below 20 pN. We have validated our free energy model using Brownian dynamics and reproduce key features of protein folding. This free energy model can predict the effects of changes in the elastic properties of a multidomain protein as a consequence of biological modifications such as phosphorylation or the formation of disulfide bonds. This work lays the foundations for the modeling of tissue elasticity, which is largely determined by the properties of tandem polyproteins.


Assuntos
Elasticidade , Proteínas/fisiologia
14.
J Biol Chem ; 289(39): 26722-26732, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25096579

RESUMO

Neurodegenerative diseases share a common characteristic, the presence of intracellular or extracellular deposits of protein aggregates in nervous tissues. Amyotrophic Lateral Sclerosis (ALS) is a severe and fatal neurodegenerative disorder, which affects preferentially motoneurons. Changes in the redox state of superoxide dismutase 1 (SOD1) are associated with the onset and development of familial forms of ALS. In human SOD1 (hSOD1), a conserved disulfide bond and two free cysteine residues can engage in anomalous thiol/disulfide exchange resulting in non-native disulfides, a hallmark of ALS that is related to protein misfolding and aggregation. Because of the many competing reaction pathways, traditional bulk techniques fall short at quantifying individual thiol/disulfide exchange reactions. Here, we adapt recently developed single-bond chemistry techniques to study individual disulfide isomerization reactions in hSOD1. Mechanical unfolding of hSOD1 leads to the formation of a polypeptide loop held by the disulfide. This loop behaves as a molecular jump rope that brings reactive Cys-111 close to the disulfide. Using force-clamp spectroscopy, we monitor nucleophilic attack of Cys-111 at either sulfur of the disulfide and determine the selectivity of the reaction. Disease-causing mutations G93A and A4V show greatly altered reactivity patterns, which may contribute to the progression of familial ALS.


Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Cisteína/química , Dissulfetos/química , Mutação de Sentido Incorreto , Desdobramento de Proteína , Superóxido Dismutase/química , Substituição de Aminoácidos , Esclerose Lateral Amiotrófica/genética , Cisteína/genética , Humanos , Oxirredução , Estrutura Secundária de Proteína , Superóxido Dismutase/genética , Superóxido Dismutase-1
15.
Cell ; 156(6): 1235-1246, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24630725

RESUMO

The giant elastic protein titin is a determinant factor in how much blood fills the left ventricle during diastole and thus in the etiology of heart disease. Titin has been identified as a target of S-glutathionylation, an end product of the nitric-oxide-signaling cascade that increases cardiac muscle elasticity. However, it is unknown how S-glutathionylation may regulate the elasticity of titin and cardiac tissue. Here, we show that mechanical unfolding of titin immunoglobulin (Ig) domains exposes buried cysteine residues, which then can be S-glutathionylated. S-glutathionylation of cryptic cysteines greatly decreases the mechanical stability of the parent Ig domain as well as its ability to fold. Both effects favor a more extensible state of titin. Furthermore, we demonstrate that S-glutathionylation of cryptic cysteines in titin mediates mechanochemical modulation of the elasticity of human cardiomyocytes. We propose that posttranslational modification of cryptic residues is a general mechanism to regulate tissue elasticity.


Assuntos
Conectina/química , Conectina/metabolismo , Miócitos Cardíacos/metabolismo , Processamento de Proteína Pós-Traducional , Fenômenos Biomecânicos , Cisteína/metabolismo , Elasticidade , Glutarredoxinas/metabolismo , Humanos , Modelos Moleculares , Miócitos Cardíacos/citologia , Dobramento de Proteína , Estrutura Terciária de Proteína
16.
J Am Chem Soc ; 135(34): 12762-71, 2013 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-23909704

RESUMO

The active site of the Haloalkane Dehydrogenase (HaloTag) enzyme can be covalently attached to a chloroalkane ligand providing a mechanically strong tether, resistant to large pulling forces. Here we demonstrate the covalent tethering of protein L and I27 polyproteins between an atomic force microscopy (AFM) cantilever and a glass surface using HaloTag anchoring at one end and thiol chemistry at the other end. Covalent tethering is unambiguously confirmed by the observation of full length polyprotein unfolding, combined with high detachment forces that range up to ∼2000 pN. We use these covalently anchored polyproteins to study the remarkable mechanical properties of HaloTag proteins. We show that the force that triggers unfolding of the HaloTag protein exhibits a 4-fold increase, from 131 to 491 pN, when the direction of the applied force is changed from the C-terminus to the N-terminus. Force-clamp experiments reveal that unfolding of the HaloTag protein is twice as sensitive to pulling force compared to protein L and refolds at a slower rate. We show how these properties allow for the long-term observation of protein folding-unfolding cycles at high forces, without interference from the HaloTag tether.


Assuntos
Hidrolases/metabolismo , Nanotecnologia , Hidrolases/química , Hidrolases/isolamento & purificação , Fenômenos Mecânicos , Microscopia de Força Atômica , Modelos Moleculares , Dobramento de Proteína
17.
J Biol Chem ; 288(41): 29797-808, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-23963451

RESUMO

Phosphatidyl-myo-inositol mannosyltransferase A (PimA) is an essential glycosyltransferase (GT) that initiates the biosynthetic pathway of phosphatidyl-myo-inositol mannosides, lipomannan, and lipoarabinomannan, which are key glycolipids/lipoglycans of the mycobacterial cell envelope. PimA belongs to a large family of peripheral membrane-associated GTs for which the understanding of the molecular mechanism and conformational changes that govern substrate/membrane recognition and catalysis remains a major challenge. Here we used single molecule force spectroscopy techniques to study the mechanical and conformational properties of PimA. In our studies, we engineered a polyprotein containing PimA flanked by four copies of the well characterized I27 protein, which provides an unambiguous mechanical fingerprint. We found that PimA exhibits weak mechanical stability albeit displaying ß-sheet topology expected to unfold at much higher forces. Notably, PimA unfolds following heterogeneous multiple step mechanical unfolding pathways at low force akin to molten globule states. Interestingly, the ab initio low resolution envelopes obtained from small angle x-ray scattering of the unliganded PimA and the PimA·GDP complexed forms clearly demonstrate that not only the "open" and "closed" conformations of the GT-B enzyme are largely present in solution, but in addition, PimA experiences remarkable flexibility that undoubtedly corresponds to the N-terminal "Rossmann fold" domain, which has been proved to participate in protein-membrane interactions. Based on these results and on our previous experimental data, we propose a model wherein the conformational transitions are important for the mannosyltransferase to interact with the donor and acceptor substrates/membrane.


Assuntos
Proteínas de Bactérias/química , Manosiltransferases/química , Mycobacterium smegmatis/enzimologia , Conformação Proteica , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Genes Essenciais/genética , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Manosiltransferases/genética , Manosiltransferases/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia de Força Atômica/métodos , Modelos Moleculares , Dados de Sequência Molecular , Mycobacterium smegmatis/genética , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Desdobramento de Proteína , Espalhamento a Baixo Ângulo , Estresse Mecânico , Difração de Raios X
18.
Nat Protoc ; 8(7): 1261-76, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23744288

RESUMO

Here we describe a protocol for using force-clamp spectroscopy to precisely quantify the effect of force on biochemical reactions. A calibrated force is used to control the exposure of reactive sites in a single polyprotein substrate composed of repeated domains. The use of polyproteins allows the identification of successful single-molecule recordings from unambiguous mechanical unfolding fingerprints. Biochemical reactions are then measured directly by detecting the length changes of the substrate held at a constant force. We present the layout of a force-clamp spectrometer along with protocols to design and conduct experiments. These experiments measure reaction kinetics as a function of applied force. We show sample data of the force dependency of two different reactions, protein unfolding and disulfide reduction. These data, which can be acquired in just a few days, reveal mechanistic details of the reactions that currently cannot be resolved by any other technique.


Assuntos
Microscopia de Força Atômica/métodos , Desdobramento de Proteína , Calibragem , Dissulfetos/química , Desenho de Equipamento , Cinética , Microscopia de Força Atômica/instrumentação
19.
Cell ; 151(4): 794-806, 2012 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-23141538

RESUMO

PDI catalyzes the oxidative folding of disulfide-containing proteins. However, the sequence of reactions leading to a natively folded and oxidized protein remains unknown. Here we demonstrate a technique that enables independent measurements of disulfide formation and protein folding. We find that non-native disulfides are formed early in the folding pathway and can trigger misfolding. In contrast, a PDI domain favors native disulfides by catalyzing oxidation at a late stage of folding. We propose a model for cotranslational oxidative folding wherein PDI acts as a placeholder that is relieved by the pairing of cysteines caused by substrate folding. This general mechanism can explain how PDI catalyzes oxidative folding in a variety of structurally unrelated substrates.


Assuntos
Pró-Colágeno-Prolina Dioxigenase/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Dobramento de Proteína , Dissulfetos , Microscopia de Força Atômica , Modelos Moleculares , Oxirredução , Proteínas/química , Proteínas/metabolismo
20.
Proc Natl Acad Sci U S A ; 109(36): 14416-21, 2012 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-22895787

RESUMO

The elastic restoring force of tissues must be able to operate over the very wide range of loading rates experienced by living organisms. It is surprising that even the fastest events involving animal muscle tissues do not surpass a few hundred hertz. We propose that this limit is set in part by the elastic dynamics of tethered proteins extending and relaxing under a changing load. Here we study the elastic dynamics of tethered proteins using a fast force spectrometer with sub-millisecond time resolution, combined with Brownian and Molecular Dynamics simulations. We show that the act of tethering a polypeptide to an object, an inseparable part of protein elasticity in vivo and in experimental setups, greatly reduces the attempt frequency with which the protein samples its free energy. Indeed, our data shows that a tethered polypeptide can traverse its free-energy landscape with a surprisingly low effective diffusion coefficient D(eff) ~ 1,200 nm(2)/s. By contrast, our Molecular Dynamics simulations show that diffusion of an isolated protein under force occurs at D(eff) ~ 10(8) nm(2)/s. This discrepancy is attributed to the drag force caused by the tethering object. From the physiological time scales of tissue elasticity, we calculate that tethered elastic proteins equilibrate in vivo with D(eff) ~ 10(4)-10(6) nm(2)/s which is two to four orders magnitude smaller than the values measured for untethered proteins in bulk.


Assuntos
Músculos/fisiologia , Proteínas/química , Animais , Biofísica , Difusão , Elasticidade , Transferência Ressonante de Energia de Fluorescência , Cinética , Microscopia de Força Atômica , Simulação de Dinâmica Molecular , Músculos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA