Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 20232, 2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-37981653

RESUMO

Marine sediments are a useful environmental assessment matrix as they naturally trap toxic substances of anthropogenic origin and thus have higher concentrations of these than the surrounding water. Therefore, developing methods for the sensitive, accurate, and inexpensive quantification of these substances is important, as the traditional techniques have various disadvantages. The current study evaluated the effectiveness of an in situ bismuth-modified carbon-fiber microelectrode (voltamperometric sensor) to simultaneously detect Pb, Cd, and Zn in marine sediments from Puerto Jeli in El Oro Province, Ecuador. This site is representative of the contamination levels present along the coast in this province. Differential pulse anodic stripping voltammetry was applied, and the resulting linear regression for the metal quantification ranged from 12 to 50 µg mL-1, with quantification limits for Pb(II), Cd(II), and Zn(II) of 18.69, 12.55, and 19.29 µg mL-1, respectively. Thus, the quantification with the sensor was successful. According to the preliminary results, Cd and Pb values exceeded the permissible limits established by Ecuador (Texto Unificado de la Legislación Secundaria del Ministerio del Ambiente) and the US Environmental Protection Agency, respectively.

2.
Chemosphere ; 338: 139483, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37454989

RESUMO

Seafood consumption is the primary exposure route for trace metals like mercury. Accordingly, canned tuna meat has been focused on by researchers because of the potential bioaccumulation of high amounts of mercury. This study aimed to test a novel and reliable electroanalytical method employing a working electrode consisting of gold-nanoparticle-modified carbon microfibers to quantify total mercury in canned tuna samples. Determination was achieved via differential pulse anodic stripping voltammetry. The proposed method had a limit of detection of 3.9781 ± 0.0001 µg L-1 and a limit of quantification of 33.6634 ± 0.0001 µg L-1, with a sensitivity of 0.3275 nA µg L-1. The modified electrode was evaluated in samples taken from three canned tuna brands sold in the Sangolquí parish in Rumiñahui, Ecuador. These brands, coded A, B, and C, represent 47.92%, 27.08%, and 11.98% of all canned tuna sold in the Ecuadorian market, respectively. The resulting respective total mercury concentrations were 0.5999 ± 0.0001 mg kg-1; 0.9387 ± 0.0001 mg kg-1; and 0.3442 ± 0.0001 mg kg-1 for A, B, and C. Method accuracy was determined through the recovery percentages of ≥98%, which indicated acceptable accuracy for the final optimized method. Mean mercury concentrations for all samples did not represent a carcinogenic risk for consumers. However, the values obtained for potential no-carcinogenic risk and daily consumption rate suggest that consumers of tuna canned in water, particularly brand C, may be at risk.


Assuntos
Mercúrio , Nanopartículas , Animais , Mercúrio/análise , Atum , Ouro , Equador , Microeletrodos , Fibra de Carbono , Alimentos Marinhos/análise , Carcinógenos , Contaminação de Alimentos/análise
3.
Heliyon ; 8(12): e12451, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36590516

RESUMO

This study aimed to quantify the amount of total mercury in bivalves Anadara tuberculosa supplied from Esmeraldas Province and sold in markets in the Metropolitan District of Quito, Ecuador. The determined total mercury concentration was compared to the permissible limits established by the European Commission and World Health Organization-Food and Agriculture Organization and health risk subsequently assessed. Sampling was conducted in five open markets and involved collecting fifteen specimens from each market. Total mercury was measured through cold vapor atomic fluorescence spectrophotometry. Results showed that samples did not exceed the total mercury threshold value (0.5 mg kg-1). However, samples of Anadara tuberculosa from the Ofelia market, which receives fresh products from Eloy Alfaro canton, contained the highest mean levels of mercury contamination, 0.055 mg kg-1. This result could be associated to the influence of illegal mining activity in this area. In addition, methylmercury potential non-carcinogenic risk for consumers exceeded the threshold limit (>1) established by the US Environmental Protection Agency. The daily consumption rate (Rclim) was determined to be 26.61-38.50 g for a child weight of 14.5 kg, and 128.44-185.84 g for an adult weight of 70 kg. Thus, consuming a higher amount of Anadara tuberculosa could negatively affect human health.

4.
Int J Nanomedicine ; 16: 5879-5894, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34471354

RESUMO

PURPOSE: The importance of studying polyphenolic compounds as natural antioxidants has encouraged the search for new methods of analysis that are quick and simple. The synthesis of silver nanoparticles (AgNPs) using plant extracts has been presented as an alternative to determine the total polyphenolic content and its antioxidant activity. METHODS: In this study, aqueous leaf extract of Solanum mammosum, a species of plant endemic to South America, was used to produce AgNPs. The technique of oxygen radical absorption capacity using fluorescein (ORAC-FL) was used to measure antioxidant activity. The oxidation of the 2´,7´-dichlorodihydrofluorescein diacetate (DCFH2-DA) as fluorescent probe was used to measure cellular antioxidant activity (CAA). Electrochemical behavior was also examined using differential pulse voltammetry (DPV) and cyclic voltammetry (CV). Total polyphenolic content (TPH) was analyzed using the Folin-Ciocalteu method, and the major polyphenolic compound was analyzed by high performance liquid chromatography with diode array detector (HPLC/DAD). Finally, a microbial analysis was conducted using Escherichia coli and Bacillus sp. RESULTS: The average size of nanoparticles was 5.2 ± 2.3 nm measured by high-resolution transmission electron microscopy (HR-TEM). The antioxidant activity measured by ORAC-FL in the extract and nanoparticles were 3944 ± 112 and 637.5 ± 14.8 µM ET/g of sample, respectively. Cellular antioxidant activity was 14.7 ± 0.2 for the aqueous extract and 12.5 ± 0.2 for the nanoparticles. The electrochemical index (EI) was 402 µA/V for the extract and 324 µA/V for the nanoparticles. Total polyphenolic content was 826.6 ± 20.9 and 139.7 ± 20.9 mg EGA/100 g of sample. Gallic acid was the main polyphenolic compound present in the leaf extract. Microbiological analysis revealed that although leaf extract was not toxic for Escherichia coli and Bacillus sp., minor toxic activity for AgNPs was detected for both strains. CONCLUSION: It is concluded that the aqueous extract of the leaves of S. mammosum contains nontoxic antioxidant compounds capable of producing AgNPs. The methods using AgNPs can be used as a fast analytical tool to monitor the presence of water-soluble polyphenolic compounds from plant origin. Analysis and detection of new antioxidants from plant extracts may be potentially applicable in biomedicine.


Assuntos
Nanopartículas Metálicas , Solanum , Antioxidantes , Fluoresceína , Capacidade de Absorbância de Radicais de Oxigênio , Extratos Vegetais , Espécies Reativas de Oxigênio , Prata , Água
5.
Materials (Basel) ; 13(3)2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-31973124

RESUMO

The search for sensitive and rapid analytical techniques for the determination of natural antioxidants is an area in constant growth due, among other aspects, to the complexity of plant matrices. In this study, silver nanoparticles prepared with the aqueous extract of Mimosa albida leaves were used to assess their polyphenolic content and antioxidant capacity. Silver nanoparticles were characterized by different techniques. As a result, nanoparticles of 6.5 ± 3.1 nm were obtained. The total phenolic content in the extract was 1320.4 ± 17.6 mg of gallic acid equivalents GAE. 100 g-1 and in the nanoparticles 257.3 ± 5.1 mg GAE. 100 g-1. From the phenolic profile analyzed by ultra high-performance liquid chromatography (UPLC) with a diode-array detector (DAD), the presence of apigenin and luteolin in the plant extract is postulated. The antioxidant capacity measured by oxygen radical absorbance capacity ORAC-fluorescein assay was 86917 ± 6287 and 7563 ± 967 µmol ET g-1 in the extract and nanoparticles respectively. Electrochemical analysis by cyclic voltammetry (CV) confirmed the effective reduction capacity of the Mimosa albida leaves extract to reduce Ag ions to AgNPs and differential pulse voltammetry (DPV) suggested the presence of two main reducing agents in the extract. From this study, it was concluded that the aqueous extract of Mimosa albida contains reducing agents capable of synthesizing silver nanoparticles, which can be used in the phytochemical industry.

6.
Molecules ; 24(12)2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31212726

RESUMO

Long-term cadmium intake can be very dangerous to human health due to its toxic effects. Although people can be contaminated with this element from different sources, contaminated food is probably the most important one. Foods such as vegetables and fruits can become contaminated with cadmium existing in soils, irrigation water, or chemical fertilizers. Some plants produce an excess of cysteine-rich peptides (CRp) when affected by high concentrations of heavy metals such as cadmium, thus indicating the presence of this type of contamination. Among these plants is tamarillo (Solanum betaceum), which is locally known as "tree tomato". This is a native plant widely consumed in the Ecuadorian Andes because of its abundance, low cost, and high content of vitamin C and fiber. The fact that Solanum betaceum produces CRp upon contamination with heavy metals means that this plant may be able to accumulate heavy metals. If this is the case, the plant can possibly be used as an indicator of metal pollution. The main goals of the present work were to evaluate the possibility of using Solanum betaceum as an indicator of metal contamination in plants and to examine its capability to accumulate metals. Both goals were met by determination of the amounts of CRp produced by Solanum betaceum cells cultivated in vitro in the laboratory under controlled conditions in the presence of different concentrations of cadmium. The CRp determination was carried out by means of electrogeneration of iodine in an iodide solution containing reduced glutathione as a biological thiol model. Solanum betaceum cells were grown in a Murashige and Skoog solution enriched with a 30 g L-1 sugar aqueous solution and 1 mg L-1 2,4-dichlorophenoxyacetic acid. The results of these experiments confirmed the following: (1) CRp production is a function of the amount of cadmium present as a contaminant up to a limiting value after which cell apoptosis occurs; (2) Solanum betaceum accumulates cadmium; (3) the analytical method used is appropriate for CRp determination; and (4) CRp determination is a valid alternative to detect contamination by heavy metals in plants.


Assuntos
Cádmio/análise , Cádmio/metabolismo , Cisteína/análise , Técnicas Eletroquímicas , Peptídeos/análise , Solanum/química , Solanum/metabolismo , Metais Pesados/análise , Metais Pesados/metabolismo , Células Vegetais
7.
Molecules ; 24(12)2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31212797

RESUMO

We report on two new electrochemical sensors which, coupled to differential pulse voltammetry, constitutes a useful tool for diagnosis of heavy metal pollution. The electrochemical sensors AgHgNf/Cu and the AgBiNf/Cu were obtained by deposition of bimetallic particles of AgHg or AgBi on copper electrodes covered with a Nafion (Nf) film, respectively. Micrographs of the electrode's surface showed evenly scattered bimetallic particles, with an approximate diameter of 150 nm, embedded in the Nafion (Nf) film. In order to test the electrodes, the hydrogen evolution signal according to the Brdicka reaction was measured for the determination of cysteine-rich peptides (CRp) produced by plants. To check the accuracy of the electrodes, real samples of Nicotiana tabacum cells exposed to cytotoxic levels of cadmium were tested. The AgHgNf/Cu electrode produced detection limits (DLs) of 0.088 µmol L-1 for Cysteine and 0.139µmol L-1 for Glutathione, while for the AgBiNf/Cu electrode DLs were 0.41 µmol L-1 for cysteine and 0.244 µmol L-1 for glutathione. Thus, the new electrodes could be a useful analytical electrochemical system very convenient for fieldwork. The electrodes were capable of direct, accurate, and sensitive detection of synthesized peptides, despite the complex matrix where the Nicotiana tabacum cells were grown.


Assuntos
Técnicas Biossensoriais , Cobre , Eletrodos , Nanopartículas Metálicas , Peptídeos , Cádmio/toxicidade , Cobre/química , Cisteína/química , Glutationa/análise , Nanopartículas Metálicas/química , Estrutura Molecular , Peptídeos/análise , Peptídeos/química , Nicotiana/química , Nicotiana/efeitos dos fármacos , Nicotiana/metabolismo
8.
Talanta ; 85(3): 1357-63, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21807195

RESUMO

We report about the use of carbon paste electrode modified with kaolinite for analytical detection of trace lead(II) in domestic water by differential pulse voltammetry. Kaolinite clay was modified with tripolyphosphate (TPP) by impregnation method. The results show that TPP in kaolinite clay plays an important role in the accumulation process of Pb(II) on the modified electrode surface. The electroanalytical procedure for determination of Pb(II) comprised two steps: chemical accumulation of the analyte under open-circuit conditions, followed by electrochemical detection of the pre-concentrated species using differential pulse voltammetry. The analytical performance of this system has been explored by studying the effects of preconcentration time, carbon paste composition, pH, supporting electrolyte concentration, as well as interferences due to other ions. The calculated detection limit based on the variability of a blank solution (3s(b) criterion) for 10 measurements was 8.4×10(-8) mol L(-1), and the sensitivity determined from the slope of the calibration graph was 0.910 mol L(-1). The reproducibility (RSD) for five replicate measurements at 1.0 mg L(-1) lead level was 1.6%. The results indicate that this electrode is sensitive and effective for the determination of Pb(2+).


Assuntos
Carbono/química , Caulim/química , Chumbo/análise , Polifosfatos/química , Silicatos de Alumínio , Calibragem , Argila , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Concentração de Íons de Hidrogênio , Chumbo/química , Oxirredução , Reprodutibilidade dos Testes , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA