Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1286046, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37886069

RESUMO

Mucins are important glycoproteins that form a protective layer throughout the gastrointestinal and respiratory tracts. There is scientific evidence of increase in phage-resistance in the presence of mucin for some bacterial pathogens. Manipulation in mucin composition may ultimately influence the effectiveness of phage therapy. In this work, two clinical strains of K. pneumoniae (K3574 and K3325), were exposed to the lytic bacteriophage vB_KpnS-VAC35 in the presence and absence of mucin on a long-term co-evolution assay, in an attempt to mimic in vitro the exposure to mucins that bacteria and their phages face in vivo. Enumerations of the bacterial and phage counts at regular time intervals were conducted, and extraction of the genomic DNA of co-evolved bacteria to the phage, the mucin and both was performed. We determined the frequency of phage-resistant mutants in the presence and absence of mucin and including a mucolytic agent (N-acetyl L-cysteine, NAC), and sequenced them using Nanopore. We phenotypically demonstrated that the presence of mucin induces the emergence of bacterial resistance against lytic phages, effectively decreased in the presence of NAC. In addition, the genomic analysis revealed some of the genes relevant to the development of phage resistance in long-term co-evolution, with a special focus on the mucoid environment. Genes involved in the metabolism of carbohydrates were mutated in the presence of mucin. In conclusion, the use of mucolytic agents prior to the administration of lytic phages could be an interesting therapeutic option when addressing K. pneumoniae infections in environments where mucin is overproduced.

2.
Antimicrob Agents Chemother ; 65(9): e0090021, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34228538

RESUMO

Klebsiella pneumoniae is an opportunistic Gram-negative pathogen that employs different strategies (resistance and persistence) to counteract antibiotic treatments. This study aimed to search for new means of combatting imipenem-resistant and persister strains of K. pneumoniae by repurposing the anticancer drug mitomycin C as an antimicrobial agent and by combining the drug and the conventional antibiotic imipenem with the lytic phage vB_KpnM-VAC13. Several clinical K. pneumoniae isolates were characterized, and an imipenem-resistant isolate (harboring OXA-245 ß-lactamase) and a persister isolate were selected for study. The mitomycin C and imipenem MICs for both isolates were determined by the broth microdilution method. Time-kill curve data were obtained by optical density at 600 nm (OD600) measurement and CFU enumeration in the presence of each drug alone and with the phage. The frequency of occurrence of mutants resistant to each drug and the combinations was also calculated, and the efficacy of the combination treatments was evaluated using an in vivo infection model (Galleria mellonella). The lytic phage vB_KpnM-VAC13 and mitomycin C had synergistic effects on imipenem-resistant and persister isolates, both in vitro and in vivo. The phage-imipenem combination successfully killed the persisters but not the imipenem-resistant isolate harboring OXA-245 ß-lactamase. Interestingly, the combinations decreased the emergence of in vitro resistant mutants of both isolates. Combinations of the lytic phage vB_KpnM-VAC13 with mitomycin C and imipenem were effective against the persister K. pneumoniae isolate. The lytic phage-mitomycin C combination was also effective against imipenem-resistant K. pneumoniae strains harboring OXA-245 ß-lactamase.


Assuntos
Bacteriófagos , Infecções por Klebsiella , Antibacterianos/farmacologia , Humanos , Imipenem/farmacologia , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Mitomicina/farmacologia , beta-Lactamases/genética
3.
Front Microbiol ; 11: 556706, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101229

RESUMO

Bacteriophages are important in bacterial ecology and evolution. Pseudomonas aeruginosa is the most prevalent bacterial pathogen in chronic bronchopulmonary infection in cystic fibrosis (CF). In this study, we used bioinformatics, microbiological and microscopy techniques to analyze the bacteriophages present in 24 P. aeruginosa isolates belonging to the international CF clone (ST274-CC274). Interestingly, we detected the presence of five members of the Inoviridae family of prophages (Pf1, Pf4, Pf5, Pf6, Pf7), which have previously been observed in P. aeruginosa. In addition, we identified a new filamentous prophage, designated Pf8, in the P. aeruginosa AUS411.500 isolate belonging to the international CF clone. We detected only one prophage, never previously described, from the family Siphoviridiae (with 66 proteins and displaying homology with PHAGE_Pseudo_phi297_NC_016762). This prophage was isolated from the P. aeruginosa AUS531 isolate carrying a new gene which is implicated in the phage infection ability, named Bacteriophage Control Infection (bci). We characterized the role of the Bci protein in bacteriophage infection and in regulating the host Quorum Sensing (QS) system, motility and biofilm and pyocyanin production in the P. aeruginosa isogenic mutant AUS531Δbci isolate. The findings may be relevant for the identification of targets in the development of new strategies to control P. aeruginosa infections, particularly in CF patients.

4.
Antibiotics (Basel) ; 9(2)2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32041137

RESUMO

Antibiotic failure is one of the most worrying health problems worldwide. We are currently facing an international crisis with several problematic facets: new antibiotics are no longer being discovered, resistance mechanisms are occurring in almost all clinical isolates of bacteria, and recurrent infections caused by persistent bacteria are hampering the successful treatment of infections. In this context, new anti-infectious strategies against multidrug-resistant (MDR) and persistent bacteria, as well as the rescue of Food and Drug Administration (FDA)-approved compounds (drug repurposing), are being explored. Among the highlighted new anti-infectious strategies, in this review, we focus on antimicrobial peptides, anti-virulence compounds, phage therapy, and new molecules. As drugs that are being repurposed, we highlight anti-inflammatory compounds, anti-psychotics, anti-helminthics, anti-cancerous drugs, and statins.

5.
J Clin Microbiol ; 57(8)2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31189585

RESUMO

Tuberculosis (TB) remains a major health problem worldwide. Control of TB requires rapid, accurate diagnosis of active disease. However, extrapulmonary TB is very difficult to diagnose because the clinical specimens have very low bacterial loads. Several molecular methods involving direct detection of the Mycobacterium tuberculosis complex (MTBC) have emerged in recent years. Real-time PCR amplification simultaneously combines the amplification and detection of candidate sequences by using fluorescent probes (mainly TaqMan or Molecular Beacons) in automated systems. The multiplex real-time PCR-short assay is performed using locked nucleic acid (LNA) probes (length, 8 to 9 nucleotides) in combination with CodUNG to detect multiple pathogens in clinical samples. In this study, we evaluated the performance of this novel multiplex assay for detecting the MTBC in comparison with that of the conventional culture-based method. The multiplex real-time PCR-shortTUB assay targets two genes, whiB3 (redox-responsive transcriptional regulator) and pstS1 (phosphate-specific transporter), yielding limits of detection (LOD) of 10 copies and 100 copies, respectively, and amplification efficiencies of 92% and 99.7%, respectively. A total of 94 extrapulmonary samples and pulmonary samples with low mycobacterial loads (all smear negative; 75 MTBC culture positive) were analyzed using the test, yielding an overall sensitivity of 88% and a specificity of 95%. For pleural fluid and tissues/biopsy specimens, the sensitivity was 83% and 85%, respectively. In summary, this technique could be implemented in routine clinical microbiology testing to reduce the overall turnaround time for MTBC detection and may therefore be a useful tool for the diagnosis of extrapulmonary tuberculosis and diagnosis using pulmonary samples with low mycobacterial loads.


Assuntos
Carga Bacteriana/métodos , Pulmão/microbiologia , Reação em Cadeia da Polimerase Multiplex/normas , Mycobacterium tuberculosis/genética , Tuberculose/microbiologia , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/genética , Humanos , Limite de Detecção , Reação em Cadeia da Polimerase Multiplex/métodos , Mycobacterium tuberculosis/crescimento & desenvolvimento , Oligonucleotídeos/genética , Derrame Pleural/microbiologia , Sensibilidade e Especificidade
6.
Sci Rep ; 9(1): 8801, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31217546

RESUMO

Physical and cognitive disabilities are hallmarks of a variety of neurological diseases. Stem cell-based therapies are promising solutions to neuroprotect and repair the injured brain and overcome the limited capacity of the central nervous system to recover from damage. It is widely accepted that most benefits of different exogenously transplanted stem cells rely on the secretion of different factors and biomolecules that modulate inflammation, cell death and repair processes in the damaged host tissue. However, few cells survive in cerebral tissue after transplantation, diminishing the therapeutic efficacy. As general rule, cell encapsulation in natural and artificial polymers increases the in vivo engraftment of the transplanted cells. However, we have ignored the consequences of such encapsulation on the secretory activity of these cells. In this study, we investigated the biological compatibility between silk fibroin hydrogels and stem cells of mesenchymal origin, a cell population that has gained increasing attention and popularity in regenerative medicine. Although the survival of mesenchymal stem cells was not affected inside hydrogels, this biomaterial format caused adhesion and proliferation deficits and impaired secretion of several angiogenic, chemoattractant and neurogenic factors while concurrently potentiating the anti-inflammatory capacity of this cell population through a massive release of TGF-Beta-1. Our results set a milestone for the exploration of engineering polymers to modulate the secretory activity of stem cell-based therapies for neurological disorders.


Assuntos
Fibroínas/farmacologia , Hidrogéis/farmacologia , Células-Tronco Mesenquimais/metabolismo , Fatores de Crescimento Neural/metabolismo , Seda/farmacologia , Animais , Bombyx , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Cinética , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos
7.
Cir Cir ; 85 Suppl 1: 30-33, 2017 Dec.
Artigo em Espanhol | MEDLINE | ID: mdl-28041610

RESUMO

BACKGROUND: Pharmacobezoars are aggregates of undigested medications that accumulate in the gastrointestinal tract and can cause obstructive or toxic complications. In this paper, the first case is reported of a paediatric pharmacobezoar formation after a vitamin overdose. The objective of this report is to prevent the occurrence of this complication and the action to be taken. CLINIC CASE: A 6-year-old child, 6h after ingesting 40 chewable tablets of a hydrophobic vitamin E with high capacity to form a pharmacobezoar, underwent urgent oesophagogastroscopy. A viscoelastic mass of 10×4cm was observed stretching from the cardia to the greater curvature. Seventy-five percent of the mass was removed and the remainder was fragmented, hydrated and aspirated. The patient remains asymptomatic to date. CONCLUSIONS: An overdose of hydrophobic drugs can produce a bezoar formation therefore prompt evacuation is recommended with an upper gastrointestinal endoscopy, which is a safe and effective technique in gastric bezoars.


Assuntos
Bezoares/cirurgia , Cápsulas/efeitos adversos , Overdose de Drogas/complicações , Esofagoscopia/métodos , Gastroscopia/métodos , Estômago , Bezoares/etiologia , Criança , Composição de Medicamentos , Gelatina , Humanos , Interações Hidrofóbicas e Hidrofílicas , Masculino , Vitamina E/administração & dosagem
8.
Int Rev Cell Mol Biol ; 318: 27-62, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26315883

RESUMO

Life-long hematopoietic demands are met by a pool of hematopoietic stem cells (HSC) with self-renewal and multipotential differentiation ability. Humoral and paracrine signals from the bone marrow (BM) hematopoietic microenvironment control HSC activity. Cell-to-cell communication through connexin (Cx) containing gap junctions (GJs) allows pluricellular coordination and synchronization through transfer of small molecules with messenger activity. Hematopoietic and surrounding nonhematopoietic cells communicate each other through GJs, which regulate fetal and postnatal HSC content and function in hematopoietic tissues. Traffic of HSC between peripheral blood and BM is also dependent on Cx proteins. Cx mutations are associated with human disease and hematopoietic dysfunction and Cx signaling may represent a target for therapeutic intervention. In this review, we illustrate and highlight the importance of Cxs in the regulation of hematopoietic homeostasis under normal and pathological conditions.


Assuntos
Conexinas/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Tecido Linfoide/metabolismo , Comunicação Parácrina/fisiologia , Transdução de Sinais/fisiologia , Nicho de Células-Tronco/fisiologia , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Junções Comunicantes/metabolismo , Células-Tronco Hematopoéticas/citologia , Humanos , Tecido Linfoide/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA