Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 59(11): 6754-6770, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36002781

RESUMO

Impairments in mitochondrial physiology play a role in the progression of multiple neurodegenerative conditions, including peripheral neuropathy in diabetes. Blockade of muscarinic acetylcholine type 1 receptor (M1R) with specific/selective antagonists prevented mitochondrial dysfunction and reversed nerve degeneration in in vitro and in vivo models of peripheral neuropathy. Specifically, in type 1 and type 2 models of diabetes, inhibition of M1R using pirenzepine or muscarinic toxin 7 (MT7) induced AMP-activated protein kinase (AMPK) activity in dorsal root ganglia (DRG) and prevented sensory abnormalities and distal nerve fiber loss. The human neuroblastoma SH-SY5Y cell line has been extensively used as an in vitro model system to study mechanisms of neurodegeneration in DRG neurons and other neuronal sub-types. Here, we tested the hypothesis that pirenzepine or MT7 enhance AMPK activity and via this pathway augment mitochondrial function in SH-SY5Y cells. M1R expression was confirmed by utilizing a fluorescent dye, ATTO590-labeled MT7, that exhibits great specificity for this receptor. M1R antagonist treatment in SH-SY5Y culture increased AMPK phosphorylation and mitochondrial protein expression (OXPHOS). Mitochondrial membrane potential (MMP) was augmented in pirenzepine and MT7 treated cultured SH-SY5Y cells and DRG neurons. Compound C or AMPK-specific siRNA suppressed pirenzepine or MT7-induced elevation of OXPHOS expression and MMP. Moreover, muscarinic antagonists induced hyperpolarization by activating the M-current and, thus, suppressed neuronal excitability. These results reveal that negative regulation of this M1R-dependent pathway could represent a potential therapeutic target to elevate AMPK activity, enhance mitochondrial function, suppress neuropathic pain, and enhance nerve repair in peripheral neuropathy.


Assuntos
Neuroblastoma , Doenças do Sistema Nervoso Periférico , Proteínas Quinases Ativadas por AMP/metabolismo , Acetilcolina , Transporte de Elétrons , Corantes Fluorescentes , Humanos , Potencial da Membrana Mitocondrial , Proteínas Mitocondriais/metabolismo , Antagonistas Muscarínicos/farmacologia , Neurônios/metabolismo , Pirenzepina/farmacologia , RNA Interferente Pequeno/metabolismo , Receptores Muscarínicos/metabolismo
2.
Mol Metab ; 49: 101191, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33592336

RESUMO

OBJECTIVE: The distal dying-back of the longest nerve fibres is a hallmark of diabetic neuropathy, and impaired provision of energy in the form of adenosine triphosphate (ATP) may contribute to this neurodegenerative process. We hypothesised that energy supplementation via glycolysis and/or mitochondrial oxidative phosphorylation is compromised in cultured dorsal root ganglion (DRG) sensory neurons from diabetic rodents, thus contributing to axonal degeneration. Functional analysis of glycolysis and mitochondrial respiration and real-time measurement of ATP levels in live cells were our specific means to test this hypothesis. METHODS: DRG neuron cultures from age-matched control or streptozotocin (STZ)-induced type 1 diabetic rats were used for in vitro studies. Three plasmids containing ATP biosensors of varying affinities were transfected into neurons to study endogenous ATP levels in real time. The Seahorse XF analyser was used for glycolysis and mitochondrial respiration measurements. RESULTS: Fluorescence resonance energy transfer (FRET) efficiency (YFP/CFP ratio) of the ATP biosensors AT1.03 (low affinity) and AT1.03YEMK (medium affinity) were significantly higher than that measured using the ATP-insensitive construct AT1.03R122/6K in both cell bodies and neurites of DRG neurons (p < 0.0001). The ATP level was homogenous along the axons but higher in cell bodies in cultured DRG neurons from both control and diabetic rats. Treatment with oligomycin (an ATP synthase inhibitor in mitochondria) decreased the ATP levels in cultured DRG neurons. Likewise, blockade of glycolysis using 2-deoxy-d-glucose (2-DG: a glucose analogue) reduced ATP levels (p < 0.001). Cultured DRG neurons derived from diabetic rats showed a diminishment of ATP levels (p < 0.01), glycolytic capacity, glycolytic reserve and non-glycolytic acidification. Application of insulin-like growth factor-1 (IGF-1) significantly elevated all the above parameters in DRG neurons from diabetic rats. Oligomycin pre-treatment of DRG neurons, to block oxidative phosphorylation, depleted the glycolytic reserve and lowered basal respiration in sensory neurons derived from control and diabetic rats. Depletion was much higher in sensory neurons from diabetic rats compared to control rats. In addition, an acute increase in glucose concentration, in the presence or absence of oligomycin, elevated parameters of glycolysis by 1.5- to 2-fold while having no impact on mitochondrial respiration. CONCLUSION: We provide the first functional evidence for decreased glycolytic capacity in DRG neurons derived from type 1 diabetic rats. IGF-1 protected against the loss of ATP supplies in DRG cell bodies and axons in neurons derived from diabetic rats by augmenting various parameters of glycolysis and mitochondrial respiration.


Assuntos
Trifosfato de Adenosina/metabolismo , Diabetes Mellitus Experimental/metabolismo , Neuropatias Diabéticas/metabolismo , Glicólise/fisiologia , Fator de Crescimento Insulin-Like I/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Axônios , Gânglios Espinais/metabolismo , Masculino , Mitocôndrias/metabolismo , Neuritos/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Estreptozocina/farmacologia
3.
Cancers (Basel) ; 12(3)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168755

RESUMO

Mitochondrial bioenergetics profiling, a measure of oxygen consumption rates, correlates with prognostic markers and can be used to assess response to therapy in chronic lymphocytic leukemia (CLL) cells. In this study, we measured mitochondrial respiration rates in primary CLL cells using respirometry to evaluate mitochondrial function. We found significant increases in mitochondrial respiration rates in CLL versus control B lymphocytes. We also observed amongst CLL patients that advanced age, female sex, zeta-chain-associated protein of 70 kD (ZAP-70+), cluster of differentiation 38 (CD38+), and elevated ß2-microglobulin (ß2-M) predicted increased maximal respiration rates. ZAP-70+ CLL cells exhibited significantly higher bioenergetics than B lymphocytes or ZAP-70- CLL cells and were more sensitive to the uncoupler, carbonyl cyanide-p-trifluoro-methoxyphenylhydrazone (FCCP). Univariable and multivariable linear regression analysis demonstrated that ZAP-70+ predicted increased maximal respiration. ZAP-70+ is a surrogate for B cell receptor (BCR) activation and can be targeted by ibrutinib, which is a clinically approved Bruton's tyrosine kinase (BTK) inhibitor. Therefore, we evaluated the oxygen consumption rates (OCR) of CLL cells and plasma chemokine (C-C motif) ligands 3 and 4 (CCL3/CCL4) levels from ibrutinib-treated patients and demonstrated decreased OCR similar to control B lymphocytes, suggesting that ibrutinib treatment resets the mitochondrial bioenergetics, while diminished CCL3/CCL4 levels indicate the down regulation of the BCR signaling pathway in CLL. Our data support evaluation of mitochondrial respiration as a preclinical tool for the response assessment of CLL cells.

4.
Stem Cell Res Ther ; 9(1): 121, 2018 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-29720263

RESUMO

BACKGROUND: Bone marrow-derived allogeneic mesenchymal stem cells (MSCs) from young healthy donors are immunoprivileged and their clinical application for regenerative medicine is under evaluation. However, data from preclinical and initial clinical trials indicate that allogeneic MSCs after transplantation provoke a host immune response and are rejected. In the current study, we evaluated the effect of an increase in passage number in cell culture on immunoprivilege of the MSCs. Since only limited numbers of MSCs can be sourced at a time from a donor, it is imperative to expand them in culture to meet the necessary numbers required for cell therapy. Presently, the most commonly used passages for transplantation include passages (P)3-7. Therefore, in this study we included clinically relevant passages, i.e., P3, P5, and P7, for evaluation. METHODS: The immunoprivilege of MSCs was assessed with the mixed leukocyte reaction assay, where rat MSCs were cocultured with peripheral blood leukocytes for 72 h. Leukocyte-mediated cytotoxicity, apoptosis (Bax/Bcl-xl ratio), leukocyte proliferation, and alterations in cellular bioenergetics in MSCs were assessed after the coculture. Furthermore, the expression of various oxidized phospholipids (oxidized phosphatidylcholine (ox-PC)) was analyzed in MSCs using a lipidomic platform. To determine if the ox-PCs were acting in tandem with downstream intracellular protein alterations, we performed proteome analysis using a liquid chromatography/mass spectrometry (LC/MS) proteomic platform. RESULTS: Our data demonstrate that MSCs were immunoprivileged at all three passages since coculture with leukocytes did not affect the survival of MSCs at P3, P5, and P7. We also found that, with an increase in the passage number of MSCs, leukocytes did not cause any significant effect on cellular bioenergetics (basal respiration rate, spare respiratory capacity, maximal respiration, and coupling efficiency). Interestingly, in our omics data, we detected alterations in some of the ox-PCs and proteins in MSCs at different passages; however, these changes were not significant enough to affect their immunoprivilege. CONCLUSIONS: The outcome of this study demonstrates that an increase in passage number (from P3 to P7) in the cell culture does not have any significant effect on the immunoprivilege of MSCs.


Assuntos
Células-Tronco Mesenquimais/metabolismo , Proteômica/métodos , Animais , Apoptose , Diferenciação Celular , Proliferação de Células , Humanos , Masculino , Ratos , Ratos Sprague-Dawley
5.
Intensive Care Med Exp ; 4(1): 24, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27456956

RESUMO

BACKGROUND: The development of lactic acidemia (LA) in septic shock (SS) is associated with an ominous prognosis. We previously showed that the mechanism of LA in SS may relate to impaired hepatic uptake of lactate, but the mechanism was not clear. Uptake of lactate by the liver occurs by a membrane-associated, pH-dependent, antiport system known as the monocarboxylate transporter. In the hepatocyte, lactate can then be metabolized by oxidative phosphorylation or converted to glucose in the cytosol. In the present study, we examined (1) whether hepatic mitochondrial dysfunction accounted for decreased uptake of lactate in a canine model of Pseudomonas aeruginosa SS, (2) whether norepinephrine (NE) treatment by increasing mean arterial pressure (MAP) could improve mitochondrial dysfunction and LA in this model, and (3) whether gentisic acid sodium salt (GSS), a novel phenolic compound, was superior to NE in these effects. METHODS: In anesthetized/ventilated dogs, we infused the bacteria over ~10 h and measured hemodynamics in various treatment groups (see below). We then euthanized the animal and isolated the hepatic mitochondria. We measured hepatic mitochondrial oxygen consumption rates using the novel Seahorse XF24 analyzer under conditions that included: basal respiration, after the addition of adenosine- diphosphate to produce coupled respiration, and after the addition of a protonophore to produce maximal respiration. RESULTS: We found that in the septic control group, mean arterial pressure decreased over the course of the study, and that mitochondrial dysfunction developed in which there was a reduction in maximal respiration. Whereas both NE and GSS treatments reversed the reduction in mean arterial pressure and increased maximal respiration to similar extents in respective groups, only in the GSS group was there a reduction in LA. CONCLUSIONS: Hepatic mitochondrial dysfunction occurs in SS, but does not appear to be required for the development of LA in SS, since NE improved mitochondrial dysfunction without reversing LA. GSS, a phenolic compound restored mean arterial pressure, mitochondrial dysfunction, and LA in SS. This reduction in LA may be independent of its effect on improving hepatic mitochondrial function.

6.
Exp Neurol ; 273: 177-89, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26321687

RESUMO

BACKGROUND: Diabetic neuropathy comprises dying back of nerve endings that reflects impairment in axonal plasticity and regenerative nerve growth. Metabolic changes in diabetes can lead to a dysregulation of hormonal mediators, such as cytokines, that may constrain distal nerve fiber growth. Interleukin-17 (IL-17A), a proinflammatory and neurotropic cytokine produced by T-cells, was significantly reduced in sciatic nerve of streptozotocin (STZ)-diabetic rats. Thus we studied the effect of IL-17A on the phenotype of sensory neurons derived from age matched control or type 1 diabetic rats. The aims were to determine the ability of IL-17A to enhance neurite outgrowth in cultured sensory neurons, investigate the signaling pathways activated by IL-17A, study the role of mitochondria and mechanistically link to neurite outgrowth. RESULTS: IL-17A (10 ng/ml; p<0.05) significantly and dose-dependently increased total neurite outgrowth in cultures of adult dorsal root ganglia (DRG) sensory neurons derived from both control and streptozotocin (STZ)-diabetic rats. This enhancement was mediated by IL-17A-dependent activation of extracellular-regulated protein kinase (ERK) and phosphoinositide-3 kinase (PI-3K) signal transduction pathways. Pharmacological blockade of one of these activated pathways triggered complete inhibition of neurite outgrowth. IL-17A augmented mitochondrial bioenergetic function of sensory neurons derived from control or diabetic rats and this was also mediated via ERK or PI-3K. IL-17A-dependent elevation of bioenergetic function was associated with augmented expression of proteins of the mitochondrial electron transport system complexes. CONCLUSIONS: IL-17A enhanced axonal plasticity through activation of ERK and PI-3K pathways and was associated with augmented mitochondrial bioenergetic function in sensory neurons.


Assuntos
Diabetes Mellitus Experimental/patologia , Interleucina-17/farmacologia , Mitocôndrias/efeitos dos fármacos , Neuritos/efeitos dos fármacos , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/patologia , Animais , Antibióticos Antineoplásicos/toxicidade , Butadienos/farmacologia , Células Cultivadas , Cromonas/farmacologia , Diabetes Mellitus Experimental/induzido quimicamente , Modelos Animais de Doenças , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Inibidores Enzimáticos/farmacologia , Ensaio de Imunoadsorção Enzimática , Gânglios Espinais/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Morfolinas/farmacologia , Complexos Multienzimáticos/metabolismo , Nitrilas/farmacologia , Ratos , Ratos Sprague-Dawley , Estreptozocina/toxicidade
7.
J Neurovirol ; 21(4): 370-82, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25698500

RESUMO

Our previous studies in an experimental model of rabies showed neuronal process degeneration in association with severe clinical disease. Cultured adult rodent dorsal root ganglion neurons infected with challenge virus standard (CVS)-11 strain of rabies virus (RABV) showed axonal swellings and reduced axonal growth with evidence of oxidative stress. We have shown that CVS infection alters a variety of mitochondrial parameters and increases reactive oxygen species (ROS) production and mitochondrial Complex I activity vs. mock infection. We have hypothesized that a RABV protein targets mitochondria and triggers dysfunction. Mitochondrial extracts of mouse neuroblastoma cells were analyzed with a proteomics approach. We have identified peptides belonging to the RABV nucleocapsid protein (N), phosphoprotein (P), and glycoprotein (G), and our data indicate that the extract was most highly enriched with P. P was also detected by immunoblotting in RABV-infected purified mitochondrial extracts and also in Complex I immunoprecipitates from the extracts but not in mock-infected extracts. A plasmid expressing P in cells increased Complex I activity and increased ROS generation, whereas expression of other RABV proteins did not. We have analyzed recombinant plasmids encoding various P gene segments. Expression of a peptide from amino acid 139-172 increased Complex I activity and ROS generation similar to expression of the entire P protein, whereas peptides that did not contain this region did not increase Complex I activity or induce ROS generation. These results indicate that a region of the RABV P interacts with Complex I in mitochondria causing mitochondrial dysfunction, increased generation of ROS, and oxidative stress.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Fosfoproteínas/metabolismo , Vírus da Raiva/fisiologia , Raiva/virologia , Proteínas Virais/metabolismo , Animais , Western Blotting , Linhagem Celular Tumoral , Células HEK293 , Humanos , Imuno-Histoquímica , Imunoprecipitação , Camundongos , Mitocôndrias , Mutagênese Sítio-Dirigida , Estresse Oxidativo , Proteômica , Raiva/metabolismo , Transfecção
8.
Proc Natl Acad Sci U S A ; 111(51): E5537-44, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25489073

RESUMO

Doxorubicin (DOX) is widely used for treating human cancers, but can induce heart failure through an undefined mechanism. Herein we describe a previously unidentified signaling pathway that couples DOX-induced mitochondrial respiratory chain defects and necrotic cell death to the BH3-only protein Bcl-2-like 19 kDa-interacting protein 3 (Bnip3). Cellular defects, including vacuolization and disrupted mitochondria, were observed in DOX-treated mice hearts. This coincided with mitochondrial localization of Bnip3, increased reactive oxygen species production, loss of mitochondrial membrane potential, mitochondrial permeability transition pore opening, and necrosis. Interestingly, a 3.1-fold decrease in maximal mitochondrial respiration was observed in cardiac mitochondria of mice treated with DOX. In vehicle-treated control cells undergoing normal respiration, the respiratory chain complex IV subunit 1 (COX1) was tightly bound to uncoupling protein 3 (UCP3), but this complex was disrupted in cells treated with DOX. Mitochondrial dysfunction induced by DOX was accompanied by contractile failure and necrotic cell death. Conversely, shRNA directed against Bnip3 or a mutant of Bnip3 defective for mitochondrial targeting abrogated DOX-induced loss of COX1-UCP3 complexes and respiratory chain defects. Finally, Bnip3(-/-) mice treated with DOX displayed relatively normal mitochondrial morphology, respiration, and mortality rates comparable to those of saline-treated WT mice, supporting the idea that Bnip3 underlies the cardiotoxic effects of DOX. These findings reveal a new signaling pathway in which DOX-induced mitochondrial respiratory chain defects and necrotic cell death are mutually dependent on and obligatorily linked to Bnip3 gene activation. Interventions that antagonize Bnip3 may prove beneficial in preventing mitochondrial injury and heart failure in cancer patients undergoing chemotherapy.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Morte Celular/efeitos dos fármacos , Doxorrubicina/toxicidade , Proteínas de Membrana/fisiologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Proteínas Mitocondriais/fisiologia , Miócitos Cardíacos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Animais , Células Cultivadas , Transporte de Elétrons/efeitos dos fármacos , Camundongos , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/patologia , Miócitos Cardíacos/ultraestrutura , Ratos Sprague-Dawley
9.
Acta Neuropathol Commun ; 2: 60, 2014 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-24894521

RESUMO

INTRODUCTION: The pathogenesis of heart failure (HF) in diabetic individuals, called "diabetic cardiomyopathy", is only partially understood. Alterations in the cardiac autonomic nervous system due to oxidative stress have been implicated. The intrinsic cardiac nervous system (ICNS) is an important regulatory pathway of cardiac autonomic function, however, little is known about the alterations that occur in the ICNS in diabetes. We sought to characterize morphologic changes and the role of oxidative stress within the ICNS of diabetic hearts. Cultured ICNS neuronal cells from the hearts of 3- and 6-month old type 1 diabetic streptozotocin (STZ)-induced diabetic Sprague-Dawley rats and age-matched controls were examined. Confocal microscopy analysis for protein gene product 9.5 (PGP 9.5) and amino acid adducts of (E)-4-hydroxy-2-nonenal (4-HNE) using immunofluorescence was undertaken. Cell morphology was then analyzed in a blinded fashion for features of neuronal dystrophy and the presence of 4-HNE adducts. RESULTS: At 3-months, diabetic ICNS neuronal cells exhibited 30% more neurite swellings per area (p = 0.01), and had a higher proportion with dystrophic appearance (88.1% vs. 50.5%; p = <0.0001), as compared to control neurons. At 6-months, diabetic ICNS neurons exhibited more features of dystrophy as compared to controls (74.3% vs. 62.2%; p = 0.0448), with 50% more neurite branching (p = 0.0015) and 50% less neurite outgrowth (p = <0.001). Analysis of 4-HNE adducts in ICNS neurons of 6-month diabetic rats demonstrated twice the amount of reactive oxygen species (ROS) as compared to controls (p = <0.001). CONCLUSION: Neuronal dystrophy occurs in the ICNS neurons of STZ-induced diabetic rats, and accumulates temporally within the disease process. In addition, findings implicate an increase in ROS within the neuronal processes of ICNS neurons of diabetic rats suggesting an association between oxidative stress and the development of dystrophy in cardiac autonomic neurons.


Assuntos
Sistema Nervoso Autônomo/fisiopatologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/patologia , Cardiopatias/etiologia , Distrofias Neuroaxonais/etiologia , Aldeídos/metabolismo , Animais , Células Cultivadas , Inibidores de Cisteína Proteinase/farmacologia , Modelos Animais de Doenças , Cardiopatias/patologia , Masculino , Miocárdio/metabolismo , Miocárdio/patologia , Neurônios/efeitos dos fármacos , Neurotrofina 3/farmacologia , Ratos , Ratos Sprague-Dawley , Ubiquitina Tiolesterase/metabolismo
10.
J Neurovirol ; 19(6): 537-49, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24277436

RESUMO

Infection with the challenge virus standard-11 (CVS) strain of fixed rabies virus induces neuronal process degeneration in adult mice after hindlimb footpad inoculation. CVS-induced axonal swellings of primary rodent dorsal root ganglion neurons are associated with 4-hydroxy-2-nonenal protein adduct staining, indicating a critical role of oxidative stress. Mitochondrial dysfunction is the major cause of oxidative stress. We hypothesized that CVS infection induces mitochondrial dysfunction leading to oxidative stress. We investigated the effects of CVS infection on several mitochondrial parameters in different cell types. CVS infection significantly increased maximal uncoupled respiration and complex IV respiration and complex I and complex IV activities, but did not affect complex II-III or citrate synthase activities. Increases in complex I activity, but not complex IV activity, correlated with susceptibility of the cells to CVS infection. CVS infection maintained coupled respiration and rate of proton leak, indicating a tight mitochondrial coupling. Possibly as a result of enhanced complex activity and efficient coupling, a high mitochondrial membrane potential was generated. CVS infection reduced the intracellular ATP level and altered the cellular redox state as indicated by a high NADH/NAD+ ratio. The basal production of reactive oxygen species (ROS) was not affected in CVS-infected neurons. However, a higher rate of ROS generation occurred in CVS-infected neurons in the presence of mitochondrial substrates and inhibitors. We conclude that CVS infection induces mitochondrial dysfunction leading to ROS overgeneration and oxidative stress.


Assuntos
Gânglios Espinais/enzimologia , Neurônios/enzimologia , Estresse Oxidativo , Vírus da Raiva/fisiologia , Raiva/enzimologia , ATP Citrato (pro-S)-Liase/metabolismo , Trifosfato de Adenosina/metabolismo , Aldeídos/metabolismo , Animais , Linhagem Celular , Cricetinae , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Gânglios Espinais/patologia , Gânglios Espinais/virologia , Potencial da Membrana Mitocondrial , Camundongos , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Mitocôndrias/virologia , NAD/metabolismo , Neurônios/patologia , Neurônios/virologia , Cultura Primária de Células , Raiva/patologia , Raiva/virologia , Vírus da Raiva/patogenicidade , Ratos , Espécies Reativas de Oxigênio/metabolismo
11.
J Virol ; 86(15): 8139-46, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22623795

RESUMO

Recent studies in an experimental model of rabies showed major structural changes in the brain involving neuronal processes that are associated with severe clinical disease. Cultured adult rat dorsal root ganglion (DRG) neurons infected with the challenge virus standard-11 strain of rabies virus (CVS) showed axonal swellings and immunostaining for 4-hydroxy-2-nonenal (4-HNE), indicating evidence of lipid peroxidation associated with oxidative stress and reduced axonal growth compared to that of mock-infected DRG neurons. We have evaluated whether nuclear factor (NF)-κB might act as a critical bridge linking CVS infection and oxidative stress. On Western immunoblotting, CVS infection induced expression of the NF-κB p50 subunit compared to that of mock infection. Ciliary neurotrophic factor, a potent activator of NF-κB, had no effect on mock-infected rat DRG neurons and reduced the number of 4-HNE-labeled puncta. SN50, a peptide inhibitor of NF-κB, and CVS infection had an additive effect in producing axonal swellings, indicating that NF-κB is neuroprotective. The fluorescent signal for subunit p50 was quantitatively evaluated in the nucleus and cytoplasm of mock- and CVS-infected rat DRG neurons. At 24 h postinfection (p.i.), there was a significant increase in the nucleus/cytoplasm ratio, indicating increased transcriptional activity of NF-κB, perhaps as a response to stress. At both 48 and 72 h p.i., there was significantly reduced nuclear localization of NF-κB. CVS infection may induce oxidative stress by inhibiting nuclear activation of NF-κB. A rabies virus protein may directly inhibit NF-κB activity. Further investigations are needed to gain a better understanding of the basic mechanisms involved in the oxidative damage associated with rabies virus infection.


Assuntos
Gânglios Espinais/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Neurônios/metabolismo , Estresse Oxidativo , Vírus da Raiva/metabolismo , Raiva/metabolismo , Animais , Linhagem Celular , Cricetinae , Modelos Animais de Doenças , Gânglios Espinais/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/genética , Masculino , Subunidade p50 de NF-kappa B/antagonistas & inibidores , Subunidade p50 de NF-kappa B/genética , Neurônios/patologia , Neurônios/virologia , Peptídeos/farmacologia , Raiva/genética , Raiva/patologia , Vírus da Raiva/genética , Ratos , Ratos Sprague-Dawley
12.
Brain ; 135(Pt 6): 1751-66, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22561641

RESUMO

Mitochondrial dysfunction occurs in sensory neurons and may contribute to distal axonopathy in animal models of diabetic neuropathy. The adenosine monophosphate-activated protein kinase and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) signalling axis senses the metabolic demands of cells and regulates mitochondrial function. Studies in muscle, liver and cardiac tissues have shown that the activity of adenosine monophosphate-activated protein kinase and PGC-1α is decreased under hyperglycaemia. In this study, we tested the hypothesis that deficits in adenosine monophosphate-activated protein kinase/PGC-1α signalling in sensory neurons underlie impaired axonal plasticity, suboptimal mitochondrial function and development of neuropathy in rodent models of type 1 and type 2 diabetes. Phosphorylation and expression of adenosine monophosphate-activated protein kinase/PGC-1α and mitochondrial respiratory chain complex proteins were downregulated in dorsal root ganglia of both streptozotocin-diabetic rats and db/db mice. Adenoviral-mediated manipulation of endogenous adenosine monophosphate-activated protein kinase activity using mutant proteins modulated neurotrophin-directed neurite outgrowth in cultures of sensory neurons derived from adult rats. Addition of resveratrol to cultures of sensory neurons derived from rats after 3-5 months of streptozotocin-induced diabetes, significantly elevated adenosine monophosphate-activated protein kinase levels, enhanced neurite outgrowth and normalized mitochondrial inner membrane polarization in axons. The bioenergetics profile (maximal oxygen consumption rate, coupling efficiency, respiratory control ratio and spare respiratory capacity) was aberrant in cultured sensory neurons from streptozotocin-diabetic rats and was corrected by resveratrol treatment. Finally, resveratrol treatment for the last 2 months of a 5-month period of diabetes reversed thermal hypoalgesia and attenuated foot skin intraepidermal nerve fibre loss and reduced myelinated fibre mean axonal calibre in streptozotocin-diabetic rats. These data suggest that the development of distal axonopathy in diabetic neuropathy is linked to nutrient excess and mitochondrial dysfunction via defective signalling of the adenosine monophosphate-activated protein kinase/PGC-1α pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Gânglios Espinais/patologia , Doenças Mitocondriais/patologia , Doenças do Sistema Nervoso Periférico/patologia , Células Receptoras Sensoriais/enzimologia , Transdução de Sinais/fisiologia , Trifosfato de Adenosina/farmacologia , Análise de Variância , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Glicemia/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Células Cultivadas , Diabetes Mellitus Experimental/complicações , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hiperalgesia/fisiopatologia , Masculino , Potenciais da Membrana/genética , Camundongos , Doenças Mitocondriais/tratamento farmacológico , Doenças Mitocondriais/etiologia , Membranas Mitocondriais/efeitos dos fármacos , Mutação/genética , Fibras Nervosas Mielinizadas/patologia , Neuritos/patologia , Consumo de Oxigênio/efeitos dos fármacos , Técnicas de Patch-Clamp , Doenças do Sistema Nervoso Periférico/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/etiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Estimulação Física/efeitos adversos , Proteínas de Ligação a RNA/metabolismo , Ratos , Ratos Sprague-Dawley , Tempo de Reação/efeitos dos fármacos , Tempo de Reação/genética , Resveratrol , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/patologia , Transdução de Sinais/efeitos dos fármacos , Estilbenos/uso terapêutico , Fatores de Transcrição/metabolismo , Transdução Genética
13.
Brain Res ; 1423: 87-95, 2011 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-21985959

RESUMO

The presence of a proinflammatory environment in the sensory neuron axis in diabetes was tested by measuring levels of proinflammatory cytokines in lumbar dorsal root ganglia (DRG) and peripheral nerve from age matched control and streptozotocin (STZ)-induced diabetic rats. The levels of tumor necrosis factor-α (TNFα) and other cytokines were diminished in lumbar DRG from diabetic animals. Consequently, we tested the hypothesis that TNFα modulated axonal plasticity in adult sensory neurons and posited that impairments in this signal transduction pathway may underlie degeneration in diabetic sensory neuropathy. Cultured adult rat sensory neurons were grown under defined conditions and TNFα caused a dose-dependent 2-fold (P<0.05) elevation in neurite outgrowth. Neurons derived from 3 to 5month STZ-induced diabetic rats exhibited significantly reduced levels of neurite outgrowth in response to TNFα. TNFα enhanced NF-κB activity as assessed using Western blotting and plasmid reporter technology. Blockade of TNFα-induction of NF-κB activation caused inhibition of neurite outgrowth in cultured neurons. Immunofluorescent staining for NF-κB subunit p50 within neuronal nuclei revealed that medium to large diameter neurons were most susceptible to NF-κB inhibition and was associated with decreased neurite outgrowth. The results demonstrating reduced cytokine expression in DRG confirm that diabetic sensory neuropathy does not involve a neuroinflammatory component at this stage of the disease in experimental animal models. In addition, it is hypothesized that reduced TNFα expression in the DRG and possibly associated deficits in anterograde transport may contribute to impaired collatoral sprouting and regeneration in target tissue in type 1 diabetes.


Assuntos
Gânglios Espinais/patologia , NF-kappa B/metabolismo , Neuritos/efeitos dos fármacos , Células Receptoras Sensoriais/patologia , Transdução de Sinais/fisiologia , Fator de Necrose Tumoral alfa/farmacologia , Fatores Etários , Análise de Variância , Animais , Glicemia/metabolismo , Peso Corporal , Células Cultivadas , Diabetes Mellitus Experimental/patologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transfecção , Tubulina (Proteína)/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
14.
Adv Virus Res ; 79: 127-38, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21601046

RESUMO

Recent studies in an experimental model of rabies indicated that there are major structural changes in the brain involving neuronal processes that are associated with severe clinical disease. Cultured adult mouse dorsal root ganglion (DRG) neurons are a good in vitro model for studying the mechanisms involved in rabies virus-induced degeneration of neurites (axons) because, unlike other neuronal cell types, these neurons are fairly permissive to rabies virus infection. DRG neurons infected with the challenge virus standard-11 (CVS) strain of rabies virus show axonal swellings and immunostaining for 4-hydroxy-2-nonenal (4-HNE), indicating evidence of lipid peroxidation associated with oxidative stress, and also reduced axonal growth in comparison with mock-infected DRG neurons. Treatment with the antioxidant N-acetyl cysteine prevented the reduction in axonal outgrowth that occurred with CVS infection. The axonal swellings with 4-HNE-labeled puncta were found to be associated with aggregations of actively respiring mitochondria. We postulate that rabies virus infection likely induces mitochondrial dysfunction resulting in oxidative stress and degenerative changes involving neuronal processes. This mitochondrial dysfunction may be the result of either direct or indirect effects of the virus on the mitochondrial electron-transport chain or it may occur through other mechanisms. Further investigations are needed to gain a better understanding of the basic mechanisms involved in the oxidative damage associated with rabies virus infection. This information may prove helpful in the design of future therapeutic effects for this dreaded ancient disease.


Assuntos
Estresse Oxidativo , Vírus da Raiva/patogenicidade , Raiva/patologia , Animais , Modelos Animais de Doenças , Cistos Glanglionares/patologia , Cistos Glanglionares/virologia , Interações Hospedeiro-Patógeno , Humanos , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Neurônios/patologia , Neurônios/virologia
15.
Neurotox Res ; 17(1): 28-38, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19557324

RESUMO

Modification of proteins by 4-hydroxy-2-nonenal (4-HNE) has been proposed to cause neurotoxicity in a number of neurodegenerative diseases, including distal axonopathy in diabetic sensory neuropathy. We tested the hypothesis that exposure of cultured adult rat sensory neurons to 4-HNE would result in the formation of amino acid adducts on mitochondrial proteins and that this process would be associated with impaired mitochondrial function and axonal regeneration. In addition, we compared 4-HNE-induced axon pathology with that exhibited by neurons isolated from diabetic rats. Cultured adult rat dorsal root ganglion (DRG) sensory neurons were incubated with varying concentrations of 4-HNE. Cell survival, axonal morphology, and level of axon outgrowth were assessed. In addition, video microscopy of live cells, western blot, and immunofluorescent staining were utilized to detect protein adduct formation by 4-HNE and to localize actively respiring mitochondria. 4-HNE induced formation of protein adducts on cytoskeletal and mitochondrial proteins, and impaired axon regeneration by approximately 50% at 3 microM while having no effect on neuronal survival. 4-HNE initiated formation of aberrant axonal structures and caused the accumulation of mitochondria in these dystrophic structures. Neurons treated with 4-HNE exhibited a distal loss of active mitochondria. Finally, the distal axonopathy and the associated aberrant axonal structures generated by 4-HNE treatment mimicked axon pathology observed in DRG sensory neurons isolated from diabetic rats and replicated aspects of neurodegeneration observed in human diabetic sensory neuropathy.


Assuntos
Aldeídos/toxicidade , Axônios/efeitos dos fármacos , Inibidores de Cisteína Proteinase/toxicidade , Diabetes Mellitus Experimental/patologia , Mitocôndrias/efeitos dos fármacos , Células Receptoras Sensoriais/efeitos dos fármacos , Aldeídos/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Gânglios Espinais/patologia , Indóis , Masculino , Camundongos , Proteínas de Neurofilamentos/metabolismo , Compostos Orgânicos/metabolismo , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/patologia
16.
J Neuropathol Exp Neurol ; 68(6): 691-700, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19458540

RESUMO

Early inflammatory events may inhibit functional recovery after injury in both the peripheral and central nervous systems. We investigated the role of the inflammatory tumor necrosis factor/nuclear factor-kappaB (NF-kappaB) axis on events subsequent to sciatic nerve crush injury in adult rats. Electrophoretic mobility shift assays revealed that within 6 hours after crush, NF-kappaB DNA-binding activity increased significantly in a 1-cm section around the crush site. By immunofluorescence staining, there was increased nuclear localization of the NF-kappaB subunits p50 but not p65 or c-Rel in Schwann cells but no obvious inflammatory cell infiltration. In rats injected subcutaneously with etanercept, a tumor necrosis factor receptor chimera that binds free cytokine, the injury-induced rise in NF-kappaB DNA-binding activity was inhibited, and nuclear localization of p50 in Schwann cells was lowered after the injury. Axonal growth 3 days after nerve crush assessed with immunofluorescence for GAP43 demonstrated that the regeneration distance of leading axons from the site of nerve crush was greater in etanercept-treated animals than in saline-treated controls. These data indicate that tumor necrosis factor mediates rapid activation of injury-induced NF-kappaB DNA binding in Schwann cells and that these events are associated with inhibition of postinjury axonal sprouting.


Assuntos
Axônios/metabolismo , Imunoglobulina G/uso terapêutico , Fatores Imunológicos/uso terapêutico , NF-kappa B/metabolismo , Regeneração Nervosa/efeitos dos fármacos , Receptores do Fator de Necrose Tumoral/uso terapêutico , Células de Schwann/metabolismo , Neuropatia Ciática , Animais , Axotomia/métodos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Ensaio de Desvio de Mobilidade Eletroforética/métodos , Etanercepte , Proteína GAP-43/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Indóis , Masculino , Regeneração Nervosa/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Subunidades Proteicas/metabolismo , Ratos , Ratos Sprague-Dawley , Neuropatia Ciática/tratamento farmacológico , Neuropatia Ciática/metabolismo , Neuropatia Ciática/patologia , Fatores de Tempo
17.
Diabetes ; 58(6): 1356-64, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19252136

RESUMO

OBJECTIVE: Reactive oxygen species (ROS) are pro-oxidant factors in distal neurodegeneration in diabetes. We tested the hypothesis that sensory neurons exposed to type 1 diabetes would exhibit enhanced ROS and oxidative stress and determined whether this stress was associated with abnormal axon outgrowth. RESEARCH DESIGN AND METHODS: Lumbar dorsal root ganglia sensory neurons from normal or 3- to 5-month streptozotocin (STZ)-diabetic rats were cultured with 10 or 25-50 mmol/l glucose. Cell survival and axon outgrowth were assessed. ROS were analyzed using confocal microscopy. Immunofluorescent staining detected expression of manganese superoxide dismutase (MnSOD) and adducts of 4-hydroxy-2-nonenal (4-HNE), and MitoFluor Green dye detected mitochondria. RESULTS: Dorsal root ganglion neurons from normal rats exposed to 25-50 mmol/l glucose did not exhibit oxidative stress or cell death. Cultures from diabetic rats exhibited a twofold (P < 0.001) elevation of ROS in axons after 24 h in 25 mmol/l glucose compared with 10 mmol/l glucose or mannitol. Perikarya exhibited no change in ROS levels. Axonal outgrowth was reduced by approximately twofold (P < 0.001) in diabetic cultures compared with control, as was expression of MnSOD. The antioxidant N-acetyl-cysteine (1 mmol/l) lowered axonal ROS levels, normalized aberrant axonal structure, and prevented deficits in axonal outgrowth in diabetic neurons (P < 0.05). CONCLUSIONS: Dorsal root ganglia neurons with a history of diabetes expressed low MnSOD and high ROS in axons. Oxidative stress was initiated by high glucose concentration in neurons with an STZ-induced diabetic phenotype. Induction of ROS was associated with impaired axonal outgrowth and aberrant dystrophic structures that may precede or predispose the axon to degeneration and dissolution in human diabetic neuropathy.


Assuntos
Envelhecimento/fisiologia , Axônios/patologia , Diabetes Mellitus Experimental/patologia , Glucose/farmacologia , Estresse Oxidativo/fisiologia , Células Receptoras Sensoriais/patologia , Animais , Axônios/metabolismo , Caspases/metabolismo , Diabetes Mellitus Experimental/metabolismo , Masculino , Proteínas de Neurofilamentos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Células Receptoras Sensoriais/metabolismo , Superóxido Dismutase/metabolismo
18.
Neurosci Lett ; 434(1): 6-11, 2008 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-18308470

RESUMO

Hexokinase is known as the first enzyme and rate-limiting step in glycolysis. The role of hexokinase activity and localization in regulating the rate of axonal regeneration was studied in cultured adult sensory neurons of dorsal root ganglia (DRG). Immunofluorescent staining of DRG demonstrated that small-medium neurons and satellite cells exhibited high levels of expression of hexokinase I. Large neurons had negative staining for hexokinase I. Intracellular localization and biochemical studies in cultured adult rat sensory neurons revealed that hexokinase I was almost exclusively found in the mitochondrial compartment. The hypothesis that neurotrophic factor dependent activation of Akt would regulate hexokinase association with the mitochondria was tested and quantitative Western blotting showed no effect of blockade of the phosphoinositide 3-kinase (PI 3-kinase)/Akt pathway using the inhibitor LY294002, indicating this interaction of hexokinase with mitochondria was not neurotrophic factor or Akt-dependent. Finally, pharmacological blockade of hexokinase activity and inhibition of localization to the mitochondrial compartment with hexokinase II VDAC binding domain (Hxk2VBD) peptide caused a significant inhibition of neurotrophic factor-directed axon outgrowth. The results support a key role for hexokinase activity and/or localization to the mitochondria in the regulation of neurite outgrowth in cultured adult sensory neurons.


Assuntos
Gânglios Espinais/enzimologia , Cones de Crescimento/enzimologia , Hexoquinase/metabolismo , Mitocôndrias/enzimologia , Regeneração Nervosa/fisiologia , Neuritos/enzimologia , Fatores Etários , Animais , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Tamanho Celular , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Inibidores Enzimáticos/farmacologia , Gânglios Espinais/citologia , Gânglios Espinais/efeitos dos fármacos , Cones de Crescimento/efeitos dos fármacos , Hexoquinase/antagonistas & inibidores , Masculino , Mitocôndrias/efeitos dos fármacos , Fatores de Crescimento Neural/metabolismo , Regeneração Nervosa/efeitos dos fármacos , Neuritos/efeitos dos fármacos , Neuritos/ultraestrutura , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Neurônios Aferentes/citologia , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/enzimologia , Fragmentos de Peptídeos/farmacologia , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
19.
Eur J Neurosci ; 25(10): 3030-8, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17561816

RESUMO

Ceramide is a lipid second-messenger generated in response to stimuli associated with neurodegeneration that induces apoptosis, a mechanism underlying neuronal death in Parkinson's disease. We tested the hypothesis that insulin-like growth factor-1 (IGF-1) could mediate a metabolic response in CAD cells, a dopaminergic cell line of mesencephalic origin that differentiate into a neuronal-like phenotype upon serum removal, extend processes resembling neurites, synthesize abundant dopamine and noradrenaline and express the catecholaminergic biosynthetic enzymes tyrosine hydroxylase and dopamine beta-hydroxylase, and that this process was phosphatidylinositol 3-kinase (PI 3-K)-Akt-dependent and could be inhibited by C(2)-ceramide. The metabolic response was evaluated as real-time changes in extracellular acidification rate (ECAR) using microphysiometry. The IGF-1-induced ECAR response was associated with increased glycolysis, determined by increased NAD(P)H reduction, elevated hexokinase activity and Akt phosphorylation. C(2)-ceramide inhibited all these changes in a dose-dependent manner, and was specific, as it was not induced by the inactive C(2)-ceramide analogue C(2)-dihydroceramide. Inhibition of the upstream kinase, PI 3-K, also inhibited Akt phosphorylation and the metabolic response to IGF-1, similar to C(2)-ceramide. Decreased mitochondrial membrane potential occurred after loss of Akt phosphorylation. These results show that IGF-1 can rapidly modulate neuronal metabolism through PI 3-K-Akt and that early metabolic inhibition induced by C(2)-ceramide involves blockade of the PI 3-K-Akt pathway, and may compromise the first step of glycolysis. This may represent a new early event in the C(2)-ceramide-induced cell death pathway that could coordinate subsequent changes in mitochondria and commitment of neurons to apoptosis.


Assuntos
Encéfalo/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Neurônios/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Esfingosina/análogos & derivados , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Encéfalo/efeitos dos fármacos , Diferenciação Celular , Linhagem Celular Tumoral , Dopamina/biossíntese , Relação Dose-Resposta a Droga , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/fisiologia , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Glicólise/efeitos dos fármacos , Glicólise/fisiologia , Fator de Crescimento Insulin-Like I/antagonistas & inibidores , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/metabolismo , Camundongos , Degeneração Neural/metabolismo , Degeneração Neural/fisiopatologia , Neurônios/efeitos dos fármacos , Doença de Parkinson/metabolismo , Doença de Parkinson/fisiopatologia , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Esfingosina/metabolismo , Esfingosina/farmacologia
20.
J Neurosci ; 25(7): 1682-90, 2005 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-15716404

RESUMO

Embryonic dorsal root ganglion (DRG) neurons die after axonal damage in vivo, and cultured embryonic DRG neurons require exogenous neurotrophic factors that activate the neuroprotective transcription factor nuclear factor-kappaB (NF-kappaB) for survival. In contrast, adult DRG neurons survive permanent axotomy in vivo and in defined culture media devoid of exogenous neurotrophic factors in vitro. Peripheral axotomy in adult rats induces local accumulation of the cytokine tumor necrosis factor alpha (TNFalpha), a potent activator of NF-kappaB activity. We tested the hypothesis that activation of NF-kappaB stimulated by endogenous TNFalpha was required for survival of axotomized adult sensory neurons. Peripheral axotomy of lumbar DRG neurons by sciatic nerve crush induced a very rapid (within 2 h) and significant elevation in NF-kappaB-binding activity. This phenomenon was mimicked in cultured neurons in which there was substantial NF-kappaB nuclear translocation and a significant rise in NF-kappaB DNA-binding activity after plating. Inhibitors of NF-kappaB (SN50 or NF-kappaB decoy DNA) resulted in necrotic cell death of medium to large neurons (> or =40 microm) within 24 h (60 and 75%, respectively), whereas inhibition of p38 and mitogen-activated protein/extracellular signal-regulated kinase did not effect survival. ELISA revealed that these cultures contained TNFalpha, and exposure to an anti-TNFalpha antibody inhibited NF-kappaB DNA-binding activity by approximately 35% and killed approximately 40% of medium to large neurons within 24 h. The results show for the first time that cytokine-mediated activation of NF-kappaB is a component of the signaling pathway responsible for maintenance of adult sensory neuron survival after axon damage.


Assuntos
NF-kappa B/metabolismo , Neurônios Aferentes/efeitos dos fármacos , Fator de Necrose Tumoral alfa/fisiologia , Animais , Comunicação Autócrina , Axotomia , Sobrevivência Celular , Células Cultivadas/citologia , Células Cultivadas/efeitos dos fármacos , DNA/metabolismo , Gânglios Espinais/citologia , Proteínas I-kappa B/genética , Sistema de Sinalização das MAP Quinases , Masculino , NF-kappa B/antagonistas & inibidores , Compressão Nervosa , Degeneração Neural , Neurônios Aferentes/citologia , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Comunicação Parácrina , Peptídeos/farmacologia , Ligação Proteica , Subunidades Proteicas , Ratos , Ratos Wistar , Nervo Isquiático/lesões , Transcrição Gênica/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA