Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38607080

RESUMO

Poor prognosis in high-grade gliomas is mainly due to fatal relapse after surgical resection in the absence of efficient chemotherapy, which is severely hampered by the blood-brain barrier. However, the leaky blood-brain-tumour barrier forms upon tumour growth and vascularization, allowing targeted nanocarrier-mediated drug delivery. The homotypic targeting ability of cell-membrane fragments obtained from cancer cells means that these fragments can be exploited to this aim. In this experimental work, injectable nanoemulsions, which have a long history of safe clinic usage, have been wrapped in glioma-cell membrane fragments via co-extrusion to give targeted, homogeneously sized, sterile formulations. These systems were then loaded with three different chemotherapeutics, in the form of hydrophobic ion pairs that can be released into the target site thanks to interactions with physiological components. The numerous assays performed in two-dimensional (2D) and three-dimensional (3D) cell models demonstrate that the proposed approach is a versatile drug-delivery platform with chemo-tactic properties towards glioma cells, with adhesive interactions between the target cell and the cell membrane fragments most likely being responsible for the effect. This approach's promising translational perspectives towards personalized nanomedicine mean that further in vivo studies are foreseen for the future.


Assuntos
Glioma , Recidiva Local de Neoplasia , Humanos , Recidiva Local de Neoplasia/metabolismo , Glioma/tratamento farmacológico , Glioma/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Barreira Hematoencefálica/metabolismo , Membrana Celular
2.
Pharmaceutics ; 15(5)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37242600

RESUMO

Despite recent progressions in cancer genomic and immunotherapies, advanced melanoma still represents a life threat, pushing to optimise new targeted nanotechnology approaches for specific drug delivery to the tumour. To this aim, owing to their biocompatibility and favourable technological features, injectable lipid nanoemulsions were functionalised with proteins owing to two alternative approaches: transferrin was chemically grafted for active targeting, while cancer cell membrane fragments wrapping was used for homotypic targeting. In both cases, protein functionalisation was successfully achieved. Targeting efficiency was preliminarily evaluated using flow cytometry internalisation studies in two-dimensional cellular models, after fluorescence labelling of formulations with 6-coumarin. The uptake of cell-membrane-fragment-wrapped nanoemulsions was higher compared to uncoated nanoemulsions. Instead, the effect of transferrin grafting was less evident in serum-enriched medium, since such ligand probably undergoes competition with the endogenous protein. Moreover, a more pronounced internalisation was achieved when a pegylated heterodimer was employed for conjugation (p < 0.05).

3.
Biomedicines ; 11(2)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36831015

RESUMO

Cerebral cavernous malformation (CCM) or cavernoma is a major vascular disease of genetic origin, whose main phenotypes occur in the central nervous system, and is currently devoid of pharmacological therapeutic strategies. Cavernomas can remain asymptomatic during a lifetime or manifest with a wide range of symptoms, including recurrent headaches, seizures, strokes, and intracerebral hemorrhages. Loss-of-function mutations in KRIT1/CCM1 are responsible for more than 50% of all familial cases, and have been clearly shown to affect cellular junctions, redox homeostasis, inflammatory responses, and angiogenesis. In this study, we investigated the therapeutic effects of multidrug-loaded lipid nanoemulsions in rescuing the pathological phenotype of CCM disease. The pro-autophagic rapamycin, antioxidant avenanthramide, and antiangiogenic bevacizumab were loaded into nanoemulsions, with the aim of reducing the major molecular dysfunctions associated with cavernomas. Through Western blot analysis of biomarkers in an in vitro CCM model, we demonstrated that drug-loaded lipid nanoemulsions rescue antioxidant responses, reactivate autophagy, and reduce the effect of pro-angiogenic factors better than the free drugs. Our results show the importance of developing a combinatorial preventive and therapeutic approach to reduce the risk of lesion formation and inhibit or completely revert the multiple hallmarks that characterize the pathogenesis and progression of cavernomas.

4.
Antioxid Redox Signal ; 38(7-9): 496-528, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36047808

RESUMO

Significance: KRIT1 (Krev interaction trapped 1) is a scaffolding protein that plays a critical role in vascular morphogenesis and homeostasis. Its loss-of-function has been unequivocally associated with the pathogenesis of Cerebral Cavernous Malformation (CCM), a major cerebrovascular disease of genetic origin characterized by defective endothelial cell-cell adhesion and ensuing structural alterations and hyperpermeability in brain capillaries. KRIT1 contributes to the maintenance of endothelial barrier function by stabilizing the integrity of adherens junctions and inhibiting the formation of actin stress fibers. Recent Advances: Among the multiple regulatory mechanisms proposed so far, significant evidence accumulated over the past decade has clearly shown that the role of KRIT1 in the stability of endothelial barriers, including the blood-brain barrier, is largely based on its involvement in the complex machinery governing cellular redox homeostasis and responses to oxidative stress and inflammation. KRIT1 loss-of-function has, indeed, been demonstrated to cause an impairment of major redox-sensitive mechanisms involved in spatiotemporal regulation of cell adhesion and signaling, which ultimately leads to decreased cell-cell junction stability and enhanced sensitivity to oxidative stress and inflammation. Critical Issues: This review explores the redox mechanisms that influence endothelial cell adhesion and barrier function, focusing on the role of KRIT1 in such mechanisms. We propose that this supports a novel model wherein redox signaling forms the common link between the various pathogenetic mechanisms and therapeutic approaches hitherto associated with CCM disease. Future Directions: A comprehensive characterization of the role of KRIT1 in redox control of endothelial barrier physiology and defense against oxy-inflammatory insults will provide valuable insights into the development of precision medicine strategies. Antioxid. Redox Signal. 38, 496-528.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Humanos , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hemangioma Cavernoso do Sistema Nervoso Central/metabolismo , Células Endoteliais/metabolismo , Transdução de Sinais , Oxirredução , Inflamação , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína KRIT1/metabolismo
5.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36498972

RESUMO

BACKGROUND: Cerebral cavernous malformations (CCMs) are a major type of cerebrovascular lesions of proven genetic origin that occur in either sporadic (sCCM) or familial (fCCM) forms, the latter being inherited as an autosomal dominant condition linked to loss-of-function mutations in three known CCM genes. In contrast to fCCMs, sCCMs are rarely linked to mutations in CCM genes and are instead commonly and peculiarly associated with developmental venous anomalies (DVAs), suggesting distinct origins and common pathogenic mechanisms. CASE REPORT: A hemorrhagic sCCM in the right frontal lobe of the brain was surgically excised from a symptomatic 3 year old patient, preserving intact and pervious the associated DVA. MRI follow-up examination performed periodically up to 15 years after neurosurgery intervention demonstrated complete removal of the CCM lesion and no residual or relapse signs. However, 18 years after surgery, the patient experienced acute episodes of paresthesia due to a distant recurrence of a new hemorrhagic CCM lesion located within the same area as the previous one. A new surgical intervention was, therefore, necessary, which was again limited to the CCM without affecting the pre-existing DVA. Subsequent follow-up examination by contrast-enhanced MRI evidenced a persistent pattern of signal-intensity abnormalities in the bed of the DVA, including hyperintense gliotic areas, suggesting chronic inflammatory conditions. CONCLUSIONS: This case report highlights the possibility of long-term distant recurrence of hemorrhagic sCCMs associated with a DVA, suggesting that such recurrence is secondary to focal sterile inflammatory conditions generated by the DVA.


Assuntos
Hemangioma Cavernoso do Sistema Nervoso Central , Humanos , Pré-Escolar , Hemangioma Cavernoso do Sistema Nervoso Central/diagnóstico por imagem , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hemangioma Cavernoso do Sistema Nervoso Central/cirurgia , Recidiva Local de Neoplasia , Imageamento por Ressonância Magnética , Encéfalo/patologia , Mutação
6.
Nanomaterials (Basel) ; 12(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36500861

RESUMO

High-grade melanoma remains a major life-threatening illness despite the improvement in therapeutic control that has been achieved by means of targeted therapies and immunotherapies in recent years. This work presents a preclinical-level test of a multi-pronged approach that includes the loading of immunotherapeutic (ICOS-Fc), targeted (sorafenib), and chemotherapeutic (temozolomide) agents within Intralipid®, which is a biocompatible nanoemulsion with a long history of safe clinical use for total parenteral nutrition. This drug combination has been shown to inhibit tumor growth and angiogenesis with the involvement of the immune system, and a key role is played by ICOS-Fc. The inhibition of tumor growth in subcutaneous melanoma mouse models has been achieved using sub-therapeutic drug doses, which is most likely the result of the nanoemulsion's targeting properties. If translated to the human setting, this approach should therefore allow therapeutic efficacy to be achieved without increasing the risk of toxic effects.

7.
Expert Opin Drug Deliv ; 18(7): 849-876, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33406376

RESUMO

Introduction: Cerebrovascular diseases encompass various disorders of the brain vasculature, such as ischemic/hemorrhagic strokes, aneurysms, and vascular malformations, also affecting the central nervous system leading to a large variety of transient or permanent neurological disorders. They represent major causes of mortality and long-term disability worldwide, and some of them can be inherited, including Cerebral Cavernous Malformation (CCM), an autosomal dominant cerebrovascular disease linked to mutations in CCM1/KRIT1, CCM2, or CCM3/PDCD10 genes.Areas covered: Besides marked clinical and etiological heterogeneity, some commonalities are emerging among distinct cerebrovascular diseases, including key pathogenetic roles of oxidative stress and inflammation, which are increasingly recognized as major disease hallmarks and therapeutic targets. This review provides a comprehensive overview of the different clinical features and common pathogenetic determinants of cerebrovascular diseases, highlighting major challenges, including the pressing need for new diagnostic and therapeutic strategies, and focusing on emerging innovative features and promising benefits of nanomedicine strategies for early detection and targeted treatment of such diseases.Expert opinion: Specifically, we describe and discuss the multiple physico-chemical features and unique biological advantages of nanosystems, including nanodiagnostics, nanotherapeutics, and nanotheranostics, that may help improving diagnosis and treatment of cerebrovascular diseases and neurological comorbidities, with an emphasis on CCM disease.


Assuntos
Transtornos Cerebrovasculares , Hemangioma Cavernoso do Sistema Nervoso Central , Transtornos Cerebrovasculares/diagnóstico , Transtornos Cerebrovasculares/genética , Transtornos Cerebrovasculares/terapia , Hemangioma Cavernoso do Sistema Nervoso Central/diagnóstico , Hemangioma Cavernoso do Sistema Nervoso Central/genética , Hemangioma Cavernoso do Sistema Nervoso Central/terapia , Humanos , Inflamação , Mutação , Nanomedicina
8.
Int J Nanomedicine ; 15: 2999-3022, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32431498

RESUMO

High-grade gliomas are still characterized by a poor prognosis, despite recent advances in surgical treatment. Chemotherapy is currently practiced after surgery, but its efficacy is limited by aspecific toxicity on healthy cells, tumour cell chemoresistance, poor selectivity, and especially by the blood-brain barrier (BBB). Thus, despite the large number of potential drug candidates, the choice of effective chemotherapeutics is still limited to few compounds. Malignant gliomas are characterized by high infiltration and neovascularization, and leaky BBB (the so-called blood-brain tumour barrier); surgical resection is often incomplete, leaving residual cells that are able to migrate and proliferate. Nanocarriers can favour delivery of chemotherapeutics to brain tumours owing to different strategies, including chemical stabilization of the drug in the bloodstream; passive targeting (because of the leaky vascularization at the tumour site); inhibition of drug efflux mechanisms in endothelial and cancer cells; and active targeting by exploiting carriers and receptors overexpressed at the blood-brain tumour barrier. Within this concern, a suitable nanomedicine-based therapy for gliomas should not be limited to cytotoxic agents, but also target the most important pathogenetic mechanisms, including cell differentiation pathways and angiogenesis. Moreover, the combinatorial approach of cell therapy plus nanomedicine strategies can open new therapeutical opportunities. The major part of attempted preclinical approaches on animal models involves active targeting with protein ligands, but, despite encouraging results, a few number of nanomedicines reached clinical trials, and most of them include drug-loaded nanocarriers free of targeting ligands, also because of safety and scalability concerns.


Assuntos
Barreira Hematoencefálica/patologia , Neoplasias Encefálicas/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Animais , Sistemas de Liberação de Medicamentos/métodos , Glioma/classificação , Glioma/tratamento farmacológico , Humanos , Nanomedicina
9.
Cancers (Basel) ; 12(5)2020 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-32397484

RESUMO

Aims: Advanced melanoma is characterized by poor outcome. Despite the number of treatments having been increased over the last decade, current pharmacological strategies are only partially effective. Therefore, the improvement of the current systemic therapy is worthy of investigation. Methods: a nanotechnology-based poly-chemotherapy was tested at preclinical level. Temozolomide, rapamycin, and bevacizumab were co-loaded as injectable nanoemulsions for total parenteral nutrition (Intralipid®), due to suitable devices, and preliminarily tested in vitro on human and mouse cell models and in vivo on the B16-F10 melanoma mouse model. Results: Drug combination was efficiently loaded in the liquid lipid matrix of Intralipid®, including bevacizumab monoclonal antibody, leading to a fast internalization in tumour cells. An increased cytotoxicity towards melanoma cells, as well as an improved inhibition of tumour relapse, migration, and angiogenesis were demonstrated in cell models for the Intralipid®-loaded drug combinations. In preliminary in vivo studies, the proposed approach was able to reduce tumour growth significantly, compared to controls. A relevant efficacy towards tumour angiogenesis and mitotic index was determined and immune response was involved. Conclusions: In these preliminary studies, Intralipid® proved to be a safe and versatile poly-chemotherapy delivery system for advanced melanoma treatment, by acting on multiple mechanisms.

10.
Clin Exp Rheumatol ; 34(6 Suppl 102): S121-S128, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27310036

RESUMO

OBJECTIVES: Tumour necrosis factor (TNF) receptor-associated periodic syndrome (TRAPS) is a multisystemic autoinflammatory condition associated with heterozygous TNFRSF1A mutations, presenting with a variety of clinical symptoms, many of which yet unexplained. In this work, we aimed at deepening into TRAPS pathogenic mechanisms sustained by monocytes. METHODS: Microarray experiments were conducted to identify genes whose expression results altered in patients compared to healthy individuals, both under basal condition and following LPS stimulation. RESULTS: An inflammatory state baseline, characterised by constitutive overexpression of IL1ß and IL1R1 receptor, has been shown in TRAPS patients compared to controls, including in non-active disease phases. Following LPS stimulation, IL1RN up-regulation is stronger in controls than in patients and inflammatory pathways and microRNAs undergo differential regulation. Genes involved in post-translational modifications, protein folding and ubiquitination result constitutively up-regulated in TRAPS, while response to interferon types I and II is defective, failing to be up-regulated by LPS. TGFß pathway is down-regulated in untreated TRAPS monocytes, while genes involved in redox regulation result constitutively over-expressed. Finally, additional molecular alterations seem to reflect organ failures sometime complicating the disease. CONCLUSIONS: Gene expression profile in resting TRAPS monocytes has confirmed the patients' chronic inflammatory condition. In addition, pathways not yet associated with the disease have been disclosed, such as interferon types I and II response to LPS stimulation and a downregulation of the TGFß pathway in basal condition. The role of miRNA, suggested by our results, deserves in-depth analyses in light of the possible development of targeted therapies.


Assuntos
Febre/genética , Regulação da Expressão Gênica , Doenças Hereditárias Autoinflamatórias/genética , Mediadores da Inflamação/metabolismo , Monócitos/metabolismo , Adolescente , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Febre/diagnóstico , Febre/imunologia , Febre/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Estudos de Associação Genética , Marcadores Genéticos , Predisposição Genética para Doença , Doenças Hereditárias Autoinflamatórias/diagnóstico , Doenças Hereditárias Autoinflamatórias/imunologia , Doenças Hereditárias Autoinflamatórias/metabolismo , Heterozigoto , Humanos , Mediadores da Inflamação/imunologia , Proteína Antagonista do Receptor de Interleucina 1/genética , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Reação em Cadeia da Polimerase , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/imunologia , Reprodutibilidade dos Testes
11.
Stem Cells Dev ; 20(7): 1183-98, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20964598

RESUMO

In several cell types, a regulated efflux of NAD(+) across Connexin 43 hemichannels (Cx43 HC) can occur, and extracellular NAD(+) (NAD(+)(e)) affects cell-specific functions. We studied the capability of bone marrow-derived human mesenchymal stem cells (MSC) to release intracellular NAD(+) through Cx43 HC. NAD(+) efflux, quantified by a sensitive enzymatic cycling assay, was significantly upregulated by low extracellular Ca(2+) (5-6-fold), by shear stress (13-fold), and by inflammatory conditions (3.1- and 2.5-fold in cells incubated with lipopolysaccharide (LPS) or at 39°C, respectively), as compared with untreated cells, whereas it was downregulated in Cx43-siRNA-transfected MSC (by 53%) and by cell-to-cell contact (by 45%). Further, we show that NAD(+)(e) activates the purinergic receptor P2Y(11) and a cyclic adenosin monophosphate (cAMP)/cyclic ADP-ribose/[Ca(2+)](i) signaling cascade, involving the opening, unique to MSC, of L-type Ca(2+) channels. Extracellular NAD(+) enhanced nuclear translocation of cAMP/Ca(2+)-dependent transcription factors. Moreover, NAD(+), either extracellularly added or autocrinally released, resulted in stimulation of MSC functions, including proliferation, migration, release of prostaglandin E(2) and cytokines, and downregulation of T lymphocyte proliferation compared with controls. No detectable modifications of MSC markers and of adipocyte or osteocyte differentiation were induced by NAD(+)(e). Controls included Cx43-siRNA transfected and/or NAD(+)-glycohydrolase-treated MSC (autocrine effects), and NAD(+)-untreated or P2Y(11)-siRNA-transfected MSC (exogenous NAD(+)). These findings suggest a potential beneficial role of NAD(+)(e) in modulating MSC functions relevant to MSC-based cell therapies.


Assuntos
Comunicação Autócrina , Junções Comunicantes/metabolismo , Células-Tronco Mesenquimais/metabolismo , NAD/metabolismo , Receptores Purinérgicos P2/metabolismo , Trifosfato de Adenosina/metabolismo , Adipogenia , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Células Cultivadas , Conexina 43/metabolismo , AMP Cíclico/metabolismo , Citocinas/metabolismo , Dinoprostona/metabolismo , Citometria de Fluxo , Humanos , Osteogênese , RNA Interferente Pequeno , Sistemas do Segundo Mensageiro
12.
PLoS One ; 5(10)2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20957039

RESUMO

BACKGROUND: Neuroblastoma (NB) is a severe pediatric tumor originating from neural crest derivatives and accounting for 15% of childhood cancer mortality. The heterogeneous and complex genetic etiology has been confirmed with the identification of mutations in two genes, encoding for the receptor tyrosine kinase Anaplastic Lymphoma Kinase (ALK) and the transcription factor Paired-like Homeobox 2B (PHOX2B), in a limited proportion of NB patients. Interestingly, these two genes are overexpressed in the great majority of primary NB samples and cell lines. These observations led us to test the hypothesis of a regulatory or functional relationship between ALK and PHOX2B underlying NB pathogenesis. METHODOLOGY/PRINCIPAL FINDINGS: Following this possibility, we first confirmed a striking correlation between the transcription levels of ALK, PHOX2B and its direct target PHOX2A in a panel of NB cell lines. Then, we manipulated their expression in NB cell lines by siRNA-mediated knock-down and forced over-expression of each gene under analysis. Surprisingly, PHOX2B- and PHOX2A-directed siRNAs efficiently downregulated each other as well as ALK gene and, consistently, the enhanced expression of PHOX2B in NB cells yielded an increment of ALK protein. We finally demonstrated that PHOX2B drives ALK gene transcription by directly binding its promoter, which therefore represents a novel PHOX2B target. CONCLUSIONS/SIGNIFICANCE: These findings provide a compelling explanation of the concurrent involvement of these two genes in NB pathogenesis and are going to foster a better understanding of molecular interactions at the base of the disease. Moreover, this work opens new perspectives for NBs refractory to conventional therapies that may benefit from the design of novel therapeutic RNAi-based approaches for multiple gene targets.


Assuntos
Regulação Neoplásica da Expressão Gênica/fisiologia , Proteínas de Homeodomínio/fisiologia , Neuroblastoma/genética , Proteínas Tirosina Quinases/genética , Fatores de Transcrição/fisiologia , Quinase do Linfoma Anaplásico , Linhagem Celular Tumoral , Inativação Gênica , Proteínas de Homeodomínio/genética , Humanos , Técnicas In Vitro , Neuroblastoma/patologia , RNA Interferente Pequeno , Receptores Proteína Tirosina Quinases , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/genética , Ativação Transcricional
13.
Bone ; 47(1): 117-26, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20362702

RESUMO

Critical size segmental bone defects are still a major challenge in reconstructive orthopedic surgery. Transplantation of human mesenchymal stem cells (hMSC) has been proposed as an alternative to autogenous bone graft, as MSC can be expanded in vitro and induced to differentiate into bone-regenerating osteoblasts by several bone morphogenetic proteins (BMP). The aim of this study was to investigate whether the association of hMSC and BMP-7, with providing the necessary scaffold to fill the bone loss, improved bone regeneration in a rat model of critical size segmental bone defect, compared to treatment with either hMSC or BMP-7 and the matrix. In addition, we tested whether pre-treatment of hMSC with cyclic ADP-ribose (cADPR), an intracellular Ca2+ mobilizer previously shown to accelerate the in vitro expansion of hMSC (Scarfì S et al, Stem Cells, 2008), affected the osteoinductive capacity of the cells in vivo. X-ray analysis, performed 2, 10 and 16 weeks after transplantation, revealed a significantly higher score in the rats treated with hMSC and BMP-7 compared to controls, receiving either hMSC or BMP-7. Microtomography and histological analysis, performed 16weeks after transplantation, confirmed the improved bone regeneration in the animals treated with the association of hMSC and BMP-7 compared to controls. Pre-treatment with cADPR to stimulate hMSC proliferation in vitro did not affect the bone regenerating capacity of the cells in vivo. These results indicate that the association of in vitro expanded hMSC with BMP-7 provide a better osteoinductive graft compared to either hMSC or BMP-7 alone. Moreover, cADPR may be used to stimulate hMSC proliferation in vitro in order to reduce the time required to obtain a transplantable number of cells, with no adverse effect on the bone regenerating capacity of hMSC.


Assuntos
Proteína Morfogenética Óssea 7/farmacologia , Regeneração Óssea/efeitos dos fármacos , Osso e Ossos/patologia , Osso e Ossos/fisiopatologia , Células-Tronco Mesenquimais/metabolismo , Adenosina Difosfato Ribose/farmacologia , Animais , Biomarcadores/metabolismo , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/cirurgia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Osteogênese/genética , Ratos , Ratos Nus , Transcrição Gênica/efeitos dos fármacos , Cicatrização/efeitos dos fármacos , Microtomografia por Raio-X
14.
Stem Cells ; 27(10): 2469-77, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19593794

RESUMO

Abscisic acid (ABA) is a hormone involved in pivotal physiological functions in higher plants, such as response to abiotic stress and control of seed dormancy and germination. Recently, ABA was demonstrated to be autocrinally produced by human granulocytes, beta pancreatic cells, and mesenchymal stem cells (MSC) and to stimulate cell-specific functions through a signaling pathway involving the second messenger cyclic ADP-ribose (cADPR). Here we show that ABA expands human uncommitted hemopoietic progenitors (HP) in vitro, through a cADPR-mediated increase of the intracellular calcium concentration ([Ca(2+)](i)). Incubation of CD34(+) cells with micromolar ABA also induces transcriptional effects, which include NF-kappaB nuclear translocation and transcription of genes encoding for several cytokines. Human MSC stimulated with a lymphocyte-conditioned medium produce and release ABA at concentrations sufficient to exert growth-stimulatory effects on co-cultured CD34(+) cells, as demonstrated by the inhibition of colony growth in the presence of an anti-ABA monoclonal antibody. These results provide a remarkable example of conservation of a stress hormone and of its second messenger from plants to humans and identify ABA as a new hemopoietic growth factor involved in the cross-talk between HP and MSC.


Assuntos
Ácido Abscísico/farmacologia , Proliferação de Células/efeitos dos fármacos , ADP-Ribose Cíclica/metabolismo , Células-Tronco Hematopoéticas/efeitos dos fármacos , Sistemas do Segundo Mensageiro/fisiologia , Ácido Abscísico/metabolismo , Antígenos CD34/metabolismo , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Células Cultivadas , Meios de Cultivo Condicionados/farmacologia , Citocinas/efeitos dos fármacos , Citocinas/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Neovascularização Fisiológica/fisiologia , Reguladores de Crescimento de Plantas/farmacologia , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/fisiologia
15.
Respir Res ; 10: 25, 2009 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-19298665

RESUMO

BACKGROUND: Inhalation of crystalline silica induces a pulmonary fibrotic degeneration called silicosis caused by the inability of alveolar macrophages to dissolve the crystalline structure of phagocytosed quartz particles. Ascorbic acid is capable of partially dissolving quartz crystals, leading to an increase of soluble silica concentration and to the generation of new radical sites on the quartz surface. The reaction is specific for the crystalline forms of silica. It has been already demonstrated an increased cytotoxicity and stronger induction of pro-inflammatory cyclooxygenase-2 (COX-2) by ascorbic acid pre-treated quartz (QA) compared to untreated quartz (Q) in the murine macrophage cell line RAW 264.7. METHODS: Taking advantage of the enhanced macrophage response to QA as compared to Q particles, we investigated the first steps of cell activation and the contribution of early signals generated directly from the plasma membrane to the production of TNF-alpha, a cytokine that activates both inflammatory and fibrogenic pathways. RESULTS: Here we demonstrate that TNF-alpha mRNA synthesis and protein secretion are significantly increased in RAW 264.7 macrophages challenged with QA as compared to Q particles, and that the enhanced response is due to an increase of intracellular ROS. Plasma membrane-particle contact, in the absence of phagocytosis, is sufficient to trigger TNF-alpha production through a mechanism involving membrane lipid peroxidation and this appears to be even more detrimental to macrophage survival than particle phagocytosis itself. CONCLUSION: Taken together these data suggest that an impairment of pulmonary macrophage phagocytosis, i.e. in the case of alcoholic subjects, could potentiate lung disease in silica-exposed individuals.


Assuntos
Ácido Ascórbico/química , Membrana Celular/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Quartzo/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Antioxidantes/farmacologia , Hidroxitolueno Butilado/farmacologia , Linhagem Celular , Membrana Celular/imunologia , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Citocalasina B/farmacologia , Sulfato de Dextrana/farmacologia , Relação Dose-Resposta a Droga , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Masculino , Camundongos , Quartzo/química , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Depuradores/efeitos dos fármacos , Receptores Depuradores/metabolismo , Solubilidade , Propriedades de Superfície , Fatores de Tempo , Fator de Necrose Tumoral alfa/genética
16.
J Biol Chem ; 284(22): 14777-87, 2009 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-19329433

RESUMO

Abscisic acid (ABA) is a phytohormone regulating important functions in higher plants, notably responses to abiotic stress. Recently, chemical or physical stimulation of human granulocytes was shown to induce production and release of endogenous ABA, which activates specific cell functions. Here we provide evidence that ABA stimulates several functional activities of the murine microglial cell line N9 (NO and tumor necrosis factor-alpha production, cell migration) through the second messenger cyclic ADP-ribose and an increase of intracellular calcium. ABA production and release occur in N9 cells stimulated with bacterial lipopolysaccharide, phorbol myristate acetate, the chemoattractant peptide f-MLP, or beta-amyloid, the primary plaque component in Alzheimer disease. Finally, ABA priming stimulates N9 cell migration toward beta-amyloid. These results indicate that ABA is a pro-inflammatory hormone inducing autocrine microglial activation, potentially representing a new target for anti-inflammatory therapies aimed at limiting microglia-induced tissue damage in the central nervous system.


Assuntos
Ácido Abscísico/farmacologia , ADP-Ribose Cíclica/metabolismo , Microglia/citologia , Microglia/efeitos dos fármacos , Sistemas do Segundo Mensageiro , ADP-Ribosil Ciclase 1/metabolismo , Peptídeos beta-Amiloides/farmacologia , Animais , Sítios de Ligação , Cálcio/metabolismo , Linhagem Celular , Quimiocinas/biossíntese , Quimiotaxia/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ativação Enzimática/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/enzimologia , Mutagênese Sítio-Dirigida , N-Formilmetionina Leucil-Fenilalanina/farmacologia , N-Glicosil Hidrolases/metabolismo , Óxido Nítrico/biossíntese , Fosforilação/efeitos dos fármacos , Acetato de Tetradecanoilforbol/farmacologia , Fator de Necrose Tumoral alfa/biossíntese
17.
Stem Cells ; 26(11): 2855-64, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18687991

RESUMO

Abscisic acid (ABA) is a phytohormone involved in fundamental processes in higher plants. Endogenous ABA biosynthesis occurs also in lower Metazoa, in which ABA regulates several physiological functions by activating ADP-ribosyl cyclase (ADPRC) and causing overproduction of the Ca(2+)-mobilizing second messenger cyclic ADP-ribose (cADPR), thereby enhancing intracellular Ca(2+) concentration ([Ca(2+)](i)). Recently, production and release of ABA have been demonstrated to take place also in human granulocytes, where ABA behaves as a proinflammatory hormone through the same cADPR/[Ca(2+)](i) signaling pathway described in plants and in lower Metazoa. On the basis of the fact that human mesenchymal stem cells (MSC) express ADPRC activity, we investigated the effects of ABA and of its second messenger, cADPR, on purified human MSC. Both ABA and cADPR stimulate the in vitro expansion of MSC without affecting differentiation. The underlying mechanism involves a signaling cascade triggered by ABA binding to a plasma membrane receptor and consequent cyclic AMP-mediated activation of ADPRC and of the cADPR/[Ca(2+)](i) system. Moreover, ABA stimulates the following functional activities of MSC: cyclooxygenase 2-catalyzed production of prostaglandin E(2) (PGE(2)), release of several cytokines known to mediate the trophic and immunomodulatory properties of MSC, and chemokinesis. Remarkably, ABA proved to be produced and released by MSC stimulated by specific growth factors (e.g., bone morphogenetic protein-7), by inflammatory cytokines, and by lymphocyte-conditioned medium. These data demonstrate that ABA is an autocrine stimulator of MSC function and suggest that it may participate in the paracrine signaling among MSC, inflammatory/immune cells, and hemopoietic progenitors. Disclosure of potential conflicts of interest is found at the end of this article.


Assuntos
ADP-Ribosil Ciclase/fisiologia , Ácido Abscísico/fisiologia , Cálcio/metabolismo , Proliferação de Células , Células-Tronco Mesenquimais/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , Ácido Abscísico/farmacologia , Diferenciação Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , ADP-Ribose Cíclica/fisiologia , Ciclo-Oxigenase 2/metabolismo , Citocinas/biossíntese , Dinoprostona/metabolismo , Ativação Enzimática , Humanos , Células-Tronco Mesenquimais/citologia , Reguladores de Crescimento de Plantas/farmacologia , Sistemas do Segundo Mensageiro/fisiologia , Transdução de Sinais/fisiologia
18.
FEBS J ; 274(1): 60-73, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17222177

RESUMO

Exposure to quartz particles induces a pathological process named silicosis. Alveolar macrophages initiate the disease through their activation, which is the origin of the later dysfunctions. Ascorbic acid is known to selectively dissolve the quartz surface. During the reaction, ascorbic acid progressively disappears and hydroxyl radicals are generated from the quartz surface. These observations may be relevant to mammalian quartz toxicity, as substantial amounts of ascorbic acid are present in the lung epithelium. We studied the inflammatory response of the murine macrophage cell line RAW 264.7 incubated with ascorbic acid-treated quartz, through the expression and activity of the enzyme cyclo-oxygenase-2 (COX-2). COX-2 expression and prostaglandin secretion were enhanced in cells incubated with ascorbic acid-treated quartz. In contrast, no changes were observed in cells incubated with Aerosil OX50, an amorphous form of silica. Quantification of COX-2 mRNA showed a threefold increase in cells incubated with ascorbic acid-treated quartz compared with controls. The transcription factors, NF-kappaB, pCREB and AP-1, were all implicated in the increased inflammatory response. Reactive oxygen species (H(2)O(2) and OH(*)) were involved in COX-2 expression in this experimental model. Parallel experiments performed on rat alveolar macrophages from bronchoalveolar lavage confirmed the enhanced COX-2 expression and activity in the cells incubated with ascorbic acid-treated quartz compared with untreated quartz. In conclusion, the selective interaction with, and modification of, quartz particles by ascorbic acid may be a crucial event determining the inflammatory response of macrophages, which may subsequently develop into acute inflammation, eventually leading to the chronic pulmonary disease silicosis.


Assuntos
Ácido Ascórbico/farmacologia , Ciclo-Oxigenase 2/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/enzimologia , Quartzo/farmacologia , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Ciclo-Oxigenase 2/genética , Macrófagos/metabolismo , Masculino , Camundongos , NF-kappa B/metabolismo , RNA Mensageiro/biossíntese , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição AP-1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA