Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Expert Opin Ther Pat ; 31(7): 609-623, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33554679

RESUMO

INTRODUCTION: Discovery of small molecules that impede the activity of single-strand DNA repair enzyme, PARP1, has led to four marketed drugs for the treatment of advanced-stage cancers. Hence, there is a renewed enthusiasm in the PARP inhibitor discovery arena. To reduce nonspecific interactions or potential toxicities, and to understand the role of other minimally explored PARP enzymes, exciting new findings have emerged toward the development of selective inhibitors and targeted chemical biology probes. Importantly, the conventional PARP inhibitor design has evolved in a way that could potentially lead to multienzyme-targeting - a polypharmacological approach against aggressive cancers. AREAS COVERED: This review comprises recent progress made in the development of PARP inhibitors, primarily focused on human cancers. Discovery of novel PARP inhibitors with pan, selective, and multi-target inhibition using in vitro and in vivo cancer models is summarized and critically evaluated. Emphasis is given to patents published during 2016-2020, excluding TNKS 1/2 inhibitors. EXPERT OPINION: The outstanding success demonstrated by the FDA approved PARP inhibitors has fueled further clinical evaluations for expansion of their clinical utilities. The current clinical investigations include new candidates as well as marketed PARP-targeted drugs, both as single agents and in combination with other chemotherapeutics. Recent advances have also unveiled critical roles of other PARPs in oncogenic signal transduction, in addition to those of the well-documented PARP1/2 and TNKS1/2 enzymes. Further studies on lesser-known PARP members are urgently needed for functional annotations and for understanding their roles in cancer progression and other human diseases.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Animais , Desenho de Fármacos , Desenvolvimento de Medicamentos , Descoberta de Drogas , Humanos , Neoplasias/patologia , Patentes como Assunto , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores
2.
Bioorg Med Chem ; 27(2): 255-264, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30552009

RESUMO

A series of carbamate-based inhibitors of glutamate carboxypeptidase II (GCPII) were designed and synthesized using ZJ-43, N-[[[(1S)-1-carboxy-3-methylbutyl]amino]carbonyl]-l-glutamic acid, as a molecular template in order to better understand the impact of replacing one of the two nitrogen atoms in the urea-based GCPII inhibitor with an oxygen atom. Compound 7 containing a C-terminal 2-oxypentanedioic acid was more potent than compound 5 containing a C-terminal glutamic acid (2-aminopentanedioic acid) despite GCPII's preference for peptides containing an N-terminal glutamate as substrates. Subsequent crystallographic analysis revealed that ZJ-43 and its two carbamate analogs 5 and 7 with the same (S,S)-stereochemical configuration adopt a nearly identical binding mode while (R,S)-carbamate analog 8 containing a d-leucine forms a less extensive hydrogen bonding network. QM and QM/MM calculations have identified no specific interactions in the GCPII active site that would distinguish ZJ-43 from compounds 5 and 7 and attributed the higher potency of ZJ-43 and compound 7 to the free energy changes associated with the transfer of the ligand from bulk solvent to the protein active site as a result of the lower ligand strain energy and solvation/desolvation energy. Our findings underscore a broader range of factors that need to be taken into account in predicting ligand-protein binding affinity. These insights should be of particular importance in future efforts to design and develop GCPII inhibitors for optimal inhibitory potency.


Assuntos
Carbamatos/química , Glutamato Carboxipeptidase II/antagonistas & inibidores , Inibidores de Proteases/química , Ureia/análogos & derivados , Animais , Carbamatos/síntese química , Carbamatos/metabolismo , Domínio Catalítico , Linhagem Celular , Drosophila/genética , Ensaios Enzimáticos , Glutamato Carboxipeptidase II/química , Glutamato Carboxipeptidase II/metabolismo , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Inibidores de Proteases/síntese química , Inibidores de Proteases/metabolismo , Ligação Proteica , Teoria Quântica , Estereoisomerismo , Ureia/síntese química , Ureia/química , Ureia/metabolismo
3.
Biochem Biophys Res Commun ; 438(2): 243-8, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-23850693

RESUMO

Glutaminase catalyzes the hydrolysis of glutamine to glutamate and plays a central role in the proliferation of neoplastic cells via glutaminolysis, as well as in the generation of excitotoxic glutamate in central nervous system disorders such as HIV-associated dementia (HAD) and multiple sclerosis. Both glutaminase siRNA and glutaminase inhibition have been shown to be effective in in vitro models of cancer and HAD, suggesting a potential role for small molecule glutaminase inhibitors. However, there are no potent, selective inhibitors of glutaminase currently available. The two prototypical glutaminase inhibitors, BPTES and DON, are either insoluble or non-specific. In a search for more drug-like glutaminase inhibitors, we conducted a screen of 1280 in vivo active drugs (Library of Pharmacologically Active Compounds (LOPAC(1280))) and identified ebselen, chelerythrine and (R)-apomorphine. The newly identified inhibitors exhibited 10 to 1500-fold greater affinities than DON and BPTES and over 100-fold increased efficiency of inhibition. Although non-selective, it is noteworthy that the affinity of ebselen for glutaminase is more potent than any other activity yet described. It is possible that the previously reported biological activity seen with these compounds is due, in part, to glutaminase inhibition. Ebselen, chelerythrine and apomorphine complement the armamentarium of compounds to explore the role of glutaminase in disease.


Assuntos
Apomorfina/química , Azóis/química , Benzofenantridinas/química , Glutaminase/antagonistas & inibidores , Compostos Organosselênicos/química , Complexo AIDS Demência/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Glutaminase/química , Glutaminase/metabolismo , Humanos , Concentração Inibidora 50 , Isoindóis , Neoplasias/tratamento farmacológico , RNA Interferente Pequeno/metabolismo , Sensibilidade e Especificidade
4.
J Med Chem ; 55(23): 10551-63, 2012 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-23151085

RESUMO

Bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES) is a potent and selective allosteric inhibitor of kidney-type glutaminase (GLS) that has served as a molecular probe to determine the therapeutic potential of GLS inhibition. In an attempt to identify more potent GLS inhibitors with improved drug-like molecular properties, a series of BPTES analogs were synthesized and evaluated. Our structure-activity relationship (SAR) studies revealed that some truncated analogs retained the potency of BPTES, presenting an opportunity to improve its aqueous solubility. One of the analogs, N-(5-{2-[2-(5-amino-[1,3,4]thiadiazol-2-yl)-ethylsulfanyl]-ethyl}-[1,3,4]thiadiazol-2-yl)-2-phenyl-acetamide 6, exhibited similar potency and better solubility relative to BPTES and attenuated the growth of P493 human lymphoma B cells in vitro as well as in a mouse xenograft model.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Glutaminase/antagonistas & inibidores , Sulfetos/química , Sulfetos/farmacologia , Tiadiazóis/química , Tiadiazóis/farmacologia , Inibidores Enzimáticos/síntese química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Sulfetos/síntese química , Tiadiazóis/síntese química
5.
Cell Metab ; 15(2): 157-70, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22326218

RESUMO

The altered metabolism of tumors has been considered a target for anticancer therapy. However, the relationship between distinct tumor-initiating lesions and anomalies of tumor metabolism in vivo has not been addressed. We report that MYC-induced mouse liver tumors significantly increase both glucose and glutamine catabolism, whereas MET-induced liver tumors use glucose to produce glutamine. Increased glutamine catabolism in MYC-induced liver tumors is associated with decreased levels of glutamine synthetase (Glul) and the switch from Gls2 to Gls1 glutaminase. In contrast to liver tumors, MYC-induced lung tumors display increased expression of both Glul and Gls1 and accumulate glutamine. We also show that inhibition of Gls1 kills cells that overexpress MYC and catabolize glutamine. Our results suggest that the metabolic profiles of tumors are likely to depend on both the genotype and tissue of origin and have implications regarding the design of therapies targeting tumor metabolism.


Assuntos
Transformação Celular Neoplásica/metabolismo , Neoplasias Hepáticas Experimentais/metabolismo , Neoplasias Pulmonares/metabolismo , Metaboloma/fisiologia , Proteínas Proto-Oncogênicas c-met/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Western Blotting , Linhagem Celular Tumoral , Ciclo do Ácido Cítrico/fisiologia , Primers do DNA/genética , Glucoquinase/metabolismo , Glucose/metabolismo , Glutamina/metabolismo , Humanos , Immunoblotting , Imuno-Histoquímica , Marcação por Isótopo , Ácido Láctico/metabolismo , Neoplasias Hepáticas Experimentais/etiologia , Neoplasias Pulmonares/etiologia , Metaboloma/genética , Camundongos , Ressonância Magnética Nuclear Biomolecular , Proteínas Proto-Oncogênicas c-met/genética , Proteínas Proto-Oncogênicas c-myc/genética , Interferência de RNA
6.
Bioorg Med Chem Lett ; 21(20): 6184-7, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21889337

RESUMO

A series of sulfasalazine analogs were synthesized and tested for their ability to block cystine-glutamate antiporter system xc⁻ using L-[(14)C]cystine as a substrate. Replacement of sulfasalazine's diazo group with an alkyne group led to an equally potent inhibitor, 2-hydroxy-5-((4-(N-pyridin-2-ylsulfamoyl)phenyl)ethynyl)benzoic acid 6. Our SAR studies also revealed that the carboxylate group of sulfasalazine is essential for its inhibitory activity while the phenolic hydroxyl group is dispensable. Truncated analogs lacking an N-pyridin-2-ylsulfamoyl moiety were less potent than sulfasalazine, but may serve as more tractable templates because of their low molecular weight by applying a variety of fragment growing approaches. Given that sulfasalazine is rapidly metabolized through cleavage of the diazo bond, these analogs may possess a more desirable pharmacological profile as system xc- blockers, in particular, for in vivo studies.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/antagonistas & inibidores , Antiporters/antagonistas & inibidores , Cistina/metabolismo , Sulfassalazina/análogos & derivados , Sulfassalazina/farmacologia , Sistema X-AG de Transporte de Aminoácidos/metabolismo , Antiporters/metabolismo , Linhagem Celular , Humanos , Relação Estrutura-Atividade
7.
Cancer Res ; 70(22): 8981-7, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21045145

RESUMO

Mutation at the R132 residue of isocitrate dehydrogenase 1 (IDH1), frequently found in gliomas and acute myelogenous leukemia, creates a neoenzyme that produces 2-hydroxyglutarate (2-HG) from α-ketoglutarate (α-KG). We sought to therapeutically exploit this neoreaction in mutant IDH1 cells that require α-KG derived from glutamine. Glutamine is converted to glutamate by glutaminase and further metabolized to α-KG. Therefore, we inhibited glutaminase with siRNA or the small molecule inhibitor bis-2-(5-phenylacetamido-1,2,4-thiadiazol-2-yl)ethyl sulfide (BPTES) and found slowed growth of glioblastoma cells expressing mutant IDH1 compared with those expressing wild-type IDH1. Growth suppression of mutant IDH1 cells by BPTES was rescued by adding exogenous α-KG. BPTES inhibited glutaminase activity, lowered glutamate and α-KG levels, and increased glycolytic intermediates while leaving total 2-HG levels unaffected. The ability to selectively slow growth in cells with IDH1 mutations by inhibiting glutaminase suggests a unique reprogramming of intermediary metabolism and a potential therapeutic strategy.


Assuntos
Glutaminase/metabolismo , Isocitrato Desidrogenase/metabolismo , Mutação , Western Blotting , Linhagem Celular Transformada , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Glioma/genética , Glioma/metabolismo , Glioma/patologia , Ácido Glutâmico/metabolismo , Glutaminase/antagonistas & inibidores , Glutaminase/genética , Glutaratos/metabolismo , Humanos , Isocitrato Desidrogenase/genética , Ácidos Cetoglutáricos/metabolismo , Ácidos Cetoglutáricos/farmacologia , Interferência de RNA , Sulfetos/farmacologia , Tiadiazóis/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA