Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Front Pharmacol ; 15: 1439835, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39228520

RESUMO

Background and Aim: Increased oxidative stress within the airways is associated to epithelial damage and amplification of inflammatory responses that in turn contribute to Chronic Obstructive Pulmonary Disease (COPD) progression. This study was aimed to identify whether a new formulation of N-acetylcisteine (NAC), carnitine, curcumin and B2 vitamin could counteract oxidative stress and downstream pro-inflammatory events promoted by cigarette smoke extract (CSE) exposure in primary bronchial epithelial cells (PBEC), both submerged/undifferentiated (S-PBEC) and cultured at the air-liquid interface (ALI-PBEC). Methods: PBEC were exposed to CSE with/without the new formulation or NAC alone and ROS production, IL-8 and IL-6 gene expression and protein release were evaluated. Results: CSE increased ROS, IL-8 and IL-6 gene expression and protein release and the new formulation counteracted these effects. NAC alone was not effective on IL-8 and IL-6 release. The effects of a similar nutraceutical formulation were evaluated in COPD patients treated for six months. The results showed that the treatment reduced the concentration of IL-8 in nasal wash and improved quality of life. Conclusion: The tested formulation, exerting antioxidant and anti-inflammatory effects, can preserve airway epithelial homeostasis and improve clinical symptoms in COPD.

2.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892106

RESUMO

This research focuses on the target deconvolution of the natural compound myrianthic acid, a triterpenoid characterized by an ursane skeleton isolated from the roots of Myrianthus arboreus and from Oenothera maritima Nutt. (Onagraceae), using MS-based chemical proteomic techniques. Application of drug affinity responsive target stability (DARTS) and targeted-limited proteolysis coupled to mass spectrometry (t-LiP-MS) led to the identification of the enzyme fatty acid synthase (FAS) as an interesting macromolecular counterpart of myrianthic acid. This result, confirmed by comparison with the natural ursolic acid, was thoroughly investigated and validated in silico by molecular docking, which gave a precise picture of the interactions in the MA/FAS complex. Moreover, biological assays showcased the inhibitory activity of myrianthic acid against the FAS enzyme, most likely related to its antiproliferative activity towards tumor cells. Given the significance of FAS in specific pathologies, especially cancer, the myrianthic acid structural moieties could serve as a promising reference point to start the potential development of innovative approaches in therapy.


Assuntos
Simulação de Acoplamento Molecular , Proteômica , Humanos , Proteômica/métodos , Ácido Graxo Sintases/metabolismo , Ácido Graxo Sintases/química , Ácido Graxo Sintases/antagonistas & inibidores , Triterpenos/farmacologia , Triterpenos/química , Triterpenos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Espectrometria de Massas , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Terpenos/química , Terpenos/farmacologia , Terpenos/metabolismo
3.
Int J Nanomedicine ; 19: 6057-6084, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911501

RESUMO

Introduction: The design of delivery tools that efficiently transport drugs into cells remains a major challenge in drug development for most pathological conditions. Triple-negative breast cancer (TNBC) is a very aggressive subtype of breast cancer with poor prognosis and limited effective therapeutic options. Purpose: In TNBC treatment, chemotherapy remains the milestone, and doxorubicin (Dox) represents the first-line systemic treatment; however, its non-selective distribution causes a cascade of side effects. To address these problems, we developed a delivery platform based on the self-assembly of amphiphilic peptides carrying several moieties on their surfaces, aimed at targeting, enhancing penetration, and therapy. Methods: Through a single-step self-assembly process, we used amphiphilic peptides to obtain nanofibers decorated on their surfaces with the selected moieties. The surface of the nanofiber was decorated with a cell-penetrating peptide (gH625), an EGFR-targeting peptide (P22), and Dox bound to the cleavage sequence selectively recognized and cleaved by MMP-9 to obtain on-demand drug release. Detailed physicochemical and cellular analyses were performed. Results: The obtained nanofiber (NF-Dox) had a length of 250 nm and a diameter of 10 nm, and it was stable under dilution, ionic strength, and different pH environments. The biological results showed that the presence of gH625 favored the complete internalization of NF-Dox after 1h in MDA-MB 231 cells, mainly through a translocation mechanism. Interestingly, we observed the absence of toxicity of the carrier (NF) on both healthy cells such as HaCaT and TNBC cancer lines, while a similar antiproliferative effect was observed on TNBC cells after the treatment with the free-Dox at 50 µM and NF-Dox carrying 7.5 µM of Dox. Discussion: We envision that this platform is extremely versatile and can be used to efficiently carry and deliver diverse moieties. The knowledge acquired from this study will provide important guidelines for applications in basic research and biomedicine.


Assuntos
Doxorrubicina , Sistemas de Liberação de Medicamentos , Nanofibras , Neoplasias de Mama Triplo Negativas , Doxorrubicina/química , Doxorrubicina/farmacologia , Doxorrubicina/farmacocinética , Doxorrubicina/administração & dosagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Humanos , Nanofibras/química , Linhagem Celular Tumoral , Feminino , Sistemas de Liberação de Medicamentos/métodos , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/farmacocinética , Liberação Controlada de Fármacos , Sobrevivência Celular/efeitos dos fármacos , Peptídeos/química , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Receptores ErbB/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética
4.
J Transl Med ; 22(1): 582, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902710

RESUMO

BACKGROUND: Exosomes are nanosized vesicles released from all cells into surrounding biofluids, including cancer cells, and represent a very promising direction in terms of minimally invasive approaches to early disease detection. They carry tumor-specific biological contents such as DNA, RNA, proteins, lipids, and sugars, as well as surface molecules that are able to pinpoint the cellular source. By the above criteria, exosomes may be stratified according to the presence of tissue and disease-specific signatures and, due to their stability in such biofluids as plasma and serum, they represent an indispensable source of vital clinical insights from liquid biopsies, even at the earliest stages of cancer. Therefore, our work aimed to isolate and characterize LCa patients' derived exosomes from serum by Flow Cytometry in order to define a specific epitope signature exploitable for early diagnosis. METHODS: Circulating exosomes were collected from serum collected from 30 LCa patients and 20 healthy volunteers by the use of antibody affinity method exploiting CD63 specific surface marker. Membrane epitopes were then characterized by Flow cytometry multiplex analysis and compared between LCa Patients and Healthy donors. Clinical data were also matched to obtain statistical correlation. RESULTS: A distinct overexpression of CD1c, CD2, CD3, CD4, CD11c, CD14, CD20, CD44, CD56, CD105, CD146, and CD209 was identified in LCa patients compared to healthy controls, correlating positively with tumor presence. Conversely, CD24, CD31, and CD40, though not overexpressed in tumor samples, showed a significant correlation with nodal involvement in LCa patients (p < 0.01). CONCLUSION: This approach could allow us to set up a cost-effective and less invasive liquid biopsy protocol from a simple blood collection in order to early diagnose LCa and improve patients' outcomes and quality of life.


Assuntos
Detecção Precoce de Câncer , Exossomos , Neoplasias Laríngeas , Humanos , Exossomos/metabolismo , Detecção Precoce de Câncer/métodos , Masculino , Feminino , Pessoa de Meia-Idade , Neoplasias Laríngeas/diagnóstico , Neoplasias Laríngeas/sangue , Neoplasias Laríngeas/patologia , Idoso , Estudos de Casos e Controles , Citometria de Fluxo , Epitopos/imunologia , Epitopos/sangue , Biomarcadores Tumorais/sangue , Adulto
5.
Hum Cell ; 37(4): 1080-1090, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38814518

RESUMO

Airway epithelium represents a physical barrier against toxic substances and pathogens but also presents pattern recognition receptors on the epithelial cells that detect pathogens leading to molecule release and sending signals that activate both the innate and adaptive immune responses. Thus, impaired airway epithelial function and poor integrity may increase the recurrence of infections. Probiotic use in respiratory diseases as adjuvant of traditional therapy is increasingly widespread. There is growing interest in the use of non-viable heat-killed bacteria, such as tyndallized bacteria (TB), due to safety concerns and to their immunomodulatory properties. This study explores in vitro the effects of a TB blend on the immune activation of airway epithelium. 16HBE bronchial epithelial cells were exposed to different concentrations of TB. Cell viability, TB internalization, TLR2 expression, IL-6, IL-8 and TGF-ßl expression/release, E-cadherin expression and wound healing were assessed. We found that TB were tolerated, internalized, increased TLR2, E-cadherin expression, IL-6 release and wound healing but decreased both IL-8 and TGF-ßl release. In conclusion, TB activate TLR2 pathway without inducing a relevant pro-inflammatory response and improve barrier function, leading to the concept that TB preserve epithelial homeostasis and could be used as strategy to prevent and to manage respiratory infection, exacerbations included.


Assuntos
Brônquios , Células Epiteliais , Imunidade Inata , Receptor 2 Toll-Like , Humanos , Receptor 2 Toll-Like/metabolismo , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Brônquios/citologia , Brônquios/imunologia , Interleucina-6/metabolismo , Probióticos , Mucosa Respiratória/imunologia , Caderinas/metabolismo , Expressão Gênica , Células Cultivadas , Interleucina-8/metabolismo , Infecções Respiratórias/imunologia , Infecções Respiratórias/microbiologia , Sobrevivência Celular
6.
Cancers (Basel) ; 16(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38539554

RESUMO

Based on the multifaceted molecular machinery that tightly controls iron cellular homeostasis, this review delves into its paradoxical, potentially dangerous role in biological systems, with a special focus on double-edged sword correlations with cancer. Indeed, though iron is a vital micronutrient and a required cofactor participating in several essential cell functions, its tendency to cause oxidative stress can be related both to cancer risk and to the activation of cancer cell death pathways. In this scenario, ferroptosis refers to an iron-dependent form of regulated cell death (RCD) powered by an overload of lethal peroxides sharing distinctive oxidized phospholipid profiles. As a unique cell death pathway, ferroptosis is both morphologically and mechanistically different from other types of programmed cell death involving executioner family proteins. The accumulation of cytotoxic lipid peroxides encompasses a cellular antagonism between ferroptosis execution and defense systems, with iron-dependent death occurring when ferroptosis-promoting activities significantly exceed the cellular antioxidant defenses. The most recent molecular breakthroughs in the execution of ferroptosis have aroused great consideration in tumor biology, as targeting ferroptosis can provide new tools for exploring therapeutic strategies for tumor suppression. Mutations and death/survival pathway alterations, as well as distinctive metabolic regulations of cancer cells, including the propensity to generate ROS, are seen as features that can render cancer cells unprotected to ferroptosis, thereby exposing vulnerabilities which deserve further attention to be regarded as targetable for cancers with limited therapeutic options.

7.
Talanta ; 272: 125772, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38367400

RESUMO

Hydrogen peroxide (H2O2) is a biomarker relevant for oxidative stress monitoring. Most chronic airway diseases are characterized by increased oxidative stress. To date, the main methods for the detection of this analyte are expensive and time-consuming laboratory techniques such as fluorometric and colorimetric assays. There is a growing interest in the development of electrochemical sensors for H2O2 detection due to their low cost, ease of use, sensitivity and rapid response. In this work, an electrochemical sensor based on gold nanowire arrays has been developed. Thanks to the catalytic activity of gold against hydrogen peroxide reduction and the high surface area of nanowires, this sensor allows the quantification of this analyte in a fast, efficient and selective way. The sensor was obtained by template electrodeposition and consists of gold nanowires about 5 µm high and with an average diameter of about 200 nm. The high active surface area of this electrode, about 7 times larger than a planar gold electrode, ensured a high sensitivity of the sensor (0.98 µA µM-1cm-2). The sensor allows the quantification of hydrogen peroxide in the range from 10 µM to 10 mM with a limit of detection of 3.2 µM. The sensor has excellent properties in terms of reproducibility, repeatability and selectivity. The sensor was validated by quantifying the hydrogen peroxide released by human airways A549 cells exposed or not to the pro-oxidant compound rotenone. The obtained results were validated by comparing them with those obtained by flow cytometry after staining the cells with the fluorescent superoxide-sensitive Mitosox Red probe giving a very good concordance.


Assuntos
Peróxido de Hidrogênio , Nanofios , Humanos , Peróxido de Hidrogênio/química , Nanofios/química , Ouro/química , Reprodutibilidade dos Testes , Técnicas Eletroquímicas/métodos , Células Epiteliais , Eletrodos
8.
Immunology ; 172(3): 329-342, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38354831

RESUMO

Alterations in airway epithelial homeostasis increase viral respiratory infections risk. Viral infections frequently are associated with chronic obstructive pulmonary disease (COPD) exacerbations, events that dramatically promote disease progression. Mechanism promoting the main respiratory viruses entry and virus-evocated innate and adaptive immune responses have now been elucidated, and an oxidative stress central role in these pathogenic processes has been recognized. Presence of reactive oxygen species in macrophages and other cells allows them to eliminate virus, but its excess alters the balance between innate and adaptive immune responses and proteases/anti-proteases and leads to uncontrolled inflammation, tissue damage, and hypercoagulability. Different upper and lower airway cell types also play a role in viral entry and infection. Carbocysteine is a muco-active drug with anti-oxidant and anti-inflammatory properties used for the management of several chronic respiratory diseases. Although the use of anti-oxidants has been proposed as an effective strategy in COPD exacerbations management, the molecular mechanisms that explain carbocysteine efficacy have not yet been fully clarified. The present review describes the most relevant features of the common respiratory virus pathophysiology with a focus on epithelial cells and oxidative stress role and reports data supporting a putative role of carbocysteine in viral respiratory infections.


Assuntos
Carbocisteína , Estresse Oxidativo , Mucosa Respiratória , Infecções Respiratórias , Viroses , Humanos , Carbocisteína/uso terapêutico , Carbocisteína/farmacologia , Infecções Respiratórias/tratamento farmacológico , Infecções Respiratórias/imunologia , Infecções Respiratórias/virologia , Estresse Oxidativo/efeitos dos fármacos , Mucosa Respiratória/virologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/imunologia , Mucosa Respiratória/efeitos dos fármacos , Viroses/imunologia , Viroses/tratamento farmacológico , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico
9.
Int J Mol Sci ; 24(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38003276

RESUMO

Lung cancer frequently affects patients with Chronic Obstructive Pulmonary Disease (COPD). Cigarette smoke (CS) fosters cancer progression by increasing oxidative stress and by modulating epithelial-mesenchymal transition (EMT) processes in cancer cells. Formoterol (FO), a long-acting ß2-agonist widely used for the treatment of COPD, exerts antioxidant activities. This study explored in a lung adenocarcinoma cell line (A549) whether FO counteracted the effects of cigarette smoke extract (CSE) relative to oxidative stress, inflammation, EMT processes, and cell migration and proliferation. A549 was stimulated with CSE and FO, ROS were evaluated by flow-cytometry and by nanostructured electrochemical sensor, EMT markers were evaluated by flow-cytometry and Real-Time PCR, IL-8 was evaluated by ELISA, cell migration was assessed by scratch and phalloidin test, and cell proliferation was assessed by clonogenic assay. CSE significantly increased the production of ROS, IL-8 release, cell migration and proliferation, and SNAIL1 expression but significantly decreased E-cadherin expression. FO reverted all these phenomena in CSE-stimulated A549 cells. The present study provides intriguing evidence that FO may exert anti-cancer effects by reverting oxidative stress, inflammation, and EMT markers induced by CS. These findings must be validated in future clinical studies to support FO as a valuable add-on treatment for lung cancer management.


Assuntos
Adenocarcinoma de Pulmão , Fumar Cigarros , Neoplasias Pulmonares , Doença Pulmonar Obstrutiva Crônica , Humanos , Transição Epitelial-Mesenquimal , Espécies Reativas de Oxigênio/metabolismo , Fumarato de Formoterol/metabolismo , Fumarato de Formoterol/farmacologia , Interleucina-8/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Adenocarcinoma de Pulmão/patologia , Nicotiana/metabolismo , Neoplasias Pulmonares/metabolismo , Células Epiteliais/metabolismo , Estresse Oxidativo , Inflamação/metabolismo
10.
World J Gastroenterol ; 29(22): 3385-3399, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37389232

RESUMO

Clostridioides difficile (formerly called Clostridium difficile, C. difficile) infection (CDI) is listed as an urgent threat on the 2019 antibiotic resistance threats report in the United States by the Centers for Disease Control and Prevention. Early detection and appropriate disease management appear to be essential. Meanwhile, although the majority of cases are hospital-acquired CDI, community-acquired CDI cases are also on the rise, and this vulnerability is not limited to immunocompromised patients. Gastrointestinal treatments and/or gastrointestinal tract surgeries may be required for patients diagnosed with digestive diseases. Such treatments could suppress or interfere with the patient's immune system and disrupt gut flora homeostasis, creating a suitable microecosystem for C. difficile overgrowth. Currently, stool-based non-invasive screening is the first-line approach to CDI diagnosis, but the accuracy is varied due to different clinical microbiology detection methods; therefore, improving reliability is clearly required. In this review, we briefly summarised the life cycle and toxicity of C. difficile, and we examined existing diagnostic approaches with an emphasis on novel biomarkers such as microRNAs. These biomarkers can be easily detected through non-invasive liquid biopsy and can yield crucial information about ongoing pathological phenomena, particularly in CDI.


Assuntos
Clostridioides difficile , Infecções por Clostridium , MicroRNAs , Humanos , Clostridioides difficile/genética , Reprodutibilidade dos Testes , Infecções por Clostridium/diagnóstico , Fezes
11.
Bioorg Chem ; 139: 106677, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37352721

RESUMO

Here we report a detailed structure-activity relationship (SAR) study related to [1,2,4]triazolo[4,3-a]quinoxaline-based compounds targeting the reader module of bromodomain containing-protein 9 (BRD9). 3D structure-based pharmacophore models, previously introduced by us, were here employed to evaluate a second generation of compounds, exploring different substitution patterns on the heterocyclic core. Starting from the promising data obtained from our previously identified [1,2,4]triazolo[4,3-a]quinoxaline-based compounds 1-4, the combination of in silico studies, chemical synthesis, biophysical and in vitro assays led to the identification of a new set of derivatives, selected for thoroughly exploring the chemical space of the bromodomain binding site. In more details, the investigation of different linkers at C-4 position highlighted the amine spacer as mandatory for the binding with the protein counterpart and the crucial role of the alkyl substituents at C-1 for increasing the selectivity toward BRD9. Additionally, the importance of a hydrogen bond donor group, critical to anchor the ZA region and required for the interaction with Ile53 residue, was inferred from the analysis of our collected results. Herein we also propose an optimization and an update of our previously reported "pharm-druglike2" 3D structure-based pharmacophore model, introducing it as "pharm-druglike2.1". Compounds 24-26, 32, 34 and 36 were identified as new valuable BRD9 binders featuring IC50 values in the low micromolar range. Among them, 24 and 36 displayed an excellent selectivity towards BRD9 and a good antiproliferative effect on a panel of leukemia models, especially toward CCRF-CEM cell line, with no cytotoxicity on healthy cells. Notably, the interaction of 24 and 36 with the bromodomain and PHD finger-containing protein 1 (BRPF1) also emerged, disclosing them as new and unexplored dual inhibitors for these two proteins highly involved in leukemia. These findings highlight the potential for the identification of new attractive dual epidrugs as well as a promising starting point for the development of chemical degraders endowed with anticancer activities.


Assuntos
Leucemia , Fatores de Transcrição , Humanos , Fatores de Transcrição/metabolismo , Quinoxalinas/farmacologia , Quinoxalinas/química , Relação Estrutura-Atividade , Sítios de Ligação , Proteínas de Ligação a DNA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
12.
Molecules ; 28(10)2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37241902

RESUMO

A new series of tetrasubstituted pyrrole derivatives (TSPs) was synthesized based on a previously developed hypothesis on their ability to mimic hydrophobic protein motifs. The resulting new TSPs were endowed with a significant toxicity against human epithelial melanoma A375 cells, showing IC50 values ranging from 10 to 27 µM, consistent with the IC50 value of the reference compound nutlin-3a (IC50 = 15 µM). In particular, compound 10a (IC50 = 10 µM) resulted as both the most soluble and active among the previous and present TSPs. The biological investigation evidenced that the anticancer activity is related to the activation of apoptotic cell-death pathways, supporting our rational design based on the ability of TSPs to interfere with PPI involved in the cell cycle regulation of cancer cells and, in particular, the p53 pathway. A reinvestigation of the TSP pharmacophore by using DFT calculations showed that the three aromatic substituents on the pyrrole core are able to mimic the hydrophobic side chains of the hot-spot residues of parallel and antiparallel coiled coil structures suggesting a possible molecular mechanism of action. A structure-activity relationship (SAR) analysis which includes solubility studies allows us to rationalize the role of the different substituents on the pyrrole core.


Assuntos
Antineoplásicos , Melanoma , Humanos , Pirróis/farmacologia , Pirróis/química , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/farmacologia , Antineoplásicos/química , Relação Estrutura-Atividade , Melanoma/tratamento farmacológico , Proliferação de Células , Estrutura Molecular , Apoptose , Linhagem Celular Tumoral
13.
Pathol Res Pract ; 247: 154562, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37216746

RESUMO

Multiple myeloma (MM) is a plasma cells neoplasm which is often preceded by a preneoplastic condition called monoclonal gammopathy of unknown significance (MGUS). A protein called High-mobility group box-1 (HMGB-1) controls transcription and genomic stability. Both pro- and anti-tumor properties of HMGB1 have been described during tumor growth. The S100 protein family includes a protein known as psoriasin. Poorer prognosis and survival were linked to higher psoriasin expression in cancer patients. The goal of the current investigation was to compare the plasma levels of HMGB-1 and psoriasin in patients with MM and MGUS significance, as well as in a group of healthy controls. According to our research, patients with MGUS have higher HMGHB-1 concentrations than healthy controls (846.7 ± 287.6 pg/ml vs. 176.9 ± 204.8 pg/ml for controls, p < 0.001). Similarly, we found a huge difference in HMGB-1 levels for MM patients with respect to controls (928.0 ± 551.4 pg/ml vs. 176.9 ± 204.8 pg/ml; p = 0.001). No difference was found as for the Psoriasin levels in the three groups considered. Additionally, we tried to evaluate the knowledge already present in the literature about putative mechanisms of action for these molecules in the onset and development of these disorders.


Assuntos
Proteína HMGB1 , Gamopatia Monoclonal de Significância Indeterminada , Mieloma Múltiplo , Paraproteinemias , Humanos , Proteína A7 Ligante de Cálcio S100
14.
Pharmaceutics ; 15(4)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37111733

RESUMO

Inhaled corticosteroids are the mainstay in the management of lung inflammation associated to chronic lung diseases, such as asthma and chronic obstructive pulmonary disease (COPD). Nonetheless, available inhalation products are mostly short-acting formulations that require frequent administrations and do not always produce the desired anti-inflammatory effects. In this work, the production of inhalable beclomethasone dipropionate (BDP) dry powders based on polymeric particles was attempted. As starting material, the PHEA-g-RhB-g-PLA-g-PEG copolymer was chosen, obtained by grafting 0.6, 2.4 and 3.0 mol%, respectively, of rhodamine (RhB), polylactic acid (PLA) and polyethylene glycol 5000 (PEG) on alpha,beta-poly(N-2-hydroxyethyl)DL-aspartamide (PHEA). The drug was loaded into the polymeric particles (MP) as an inclusion complex (CI) with hydroxypropyl-cyclodextrin (HP-ß-Cyd) (at a stoichiometric ratio of 1:1) or as free form. The spray-drying (SD) process to produce MPs was optimized by keeping the polymer concentration (0.6 wt/vol%) constant in the liquid feed and by varying other parameters such as the drug concentration. The theoretical aerodynamic diameter (daer) values among the MPs are comparable and potentially suitable for inhalation, as confirmed also through evaluation of the experimental mass median aerodynamic diameter (MMADexp). BDP shows a controlled release profile from MPs that is significantly higher (more than tripled) than from Clenil®. In vitro tests on bronchial epithelial cells (16HBE) and adenocarcinomic human alveolar basal epithelial cells (A549) showed that all the MP samples (empty or drug-loaded) were highly biocompatible. None of the systems used induced apoptosis or necrosis. Moreover, the BDP loaded into the particles (BDP-Micro and CI-Micro) was more efficient than free BDP to counteract the effects of cigarette smoke and LPS on release of IL-6 and IL-8.

15.
J Clin Med ; 12(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37048574

RESUMO

Squamous cell carcinomas (SCC) of the external auditory canal (EAC) are rare tumors representing a surgical challenge. Current knowledge is based largely on case series; thus, the level of evidence is weak. This study sought to systematically review the available SCC of the EAC literature and to identify risk factors for overall survival (OS) and disease-specific survival (DSS). A systematic review and meta-analysis of papers searched up to December 2022 through PubMed, Scopus, Web of Science, and Cochrane Library databases was conducted. Quality assessment of the eligible studies was done according to the Newcastle-Ottawa Scale. Pooled univariate and multivariable analyses and meta-analysis using a random-effects or fixed-effects Mantel-Haenszel model were performed. Fifteen articles (282 patients) met the inclusion criteria and were included in the quantitative analysis. The pooled multivariable analysis revealed cT3 and cT4 as independent prognostic factors for OS (p = 0.005, and p < 0.001, respectively) and DSS (p = 0.002, and p < 0.001, respectively). Local recurrence rate was 32.3%. The meta-analysis estimated significantly higher odds ratios for advanced T categories, than cT1-T2 tumors for OS and DSS (OR = 3.55; 95% CI, 1.93-6.52, and OR = 3.73; 95% CI, 2.00-6.97, respectively). In conclusion, locally advanced tumors were associated with poor prognosis. Poor outcomes mostly occurred due to local recurrence.

16.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37047448

RESUMO

Based on compelling preclinical evidence concerning the progress of our novel ruthenium-based metallotherapeutics, we are focusing research efforts on challenging indications for the treatment of invasive neoplasms such as the triple-negative breast cancer (TNBC). This malignancy mainly afflicts younger women, who are black, or who have a BRCA1 mutation. Because of faster growing and spreading, TNBC differs from other invasive breast cancers having fewer treatment options and worse prognosis, where existing therapies are mostly ineffective, resulting in a large unmet biomedical need. In this context, we benefited from an experimental model of TNBC both in vitro and in vivo to explore the effects of a biocompatible cationic liposomal nanoformulation, named HoThyRu/DOTAP, able to effectively deliver the antiproliferative ruthenium(III) complex AziRu, thus resulting in a prospective candidate drug. As part of the multitargeting mechanisms featuring metal-based therapeutics other than platinum-containing agents, we herein validate the potential of HoThyRu/DOTAP liposomes to act as a multimodal anticancer agent through inhibition of TNBC cell growth and proliferation, as well as migration and invasion. The here-obtained preclinical findings suggest a potential targeting of the complex pathways network controlling invasive and migratory cancer phenotypes. Overall, in the field of alternative chemotherapy to platinum-based drugs, these outcomes suggest prospective brand-new settings for the nanostructured AziRu complex to get promising goals for the treatment of metastatic TNBC.


Assuntos
Antineoplásicos , Rutênio , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Neoplasias de Mama Triplo Negativas/patologia , Rutênio/farmacologia , Rutênio/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Ácidos Graxos Monoinsaturados , Lipossomos/uso terapêutico , Linhagem Celular Tumoral
17.
Biology (Basel) ; 12(1)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36671825

RESUMO

Exposure to cigarette smoke, allergens, viruses, and other environmental contaminants, as well as a detrimental lifestyle, are the main factors supporting elevated levels of airway oxidative stress. Elevated oxidative stress results from an imbalance in reactive oxygen species (ROS) production and efficiency in antioxidant defense systems. Uncontrolled increased oxidative stress amplifies inflammatory processes and tissue damage and alters innate and adaptive immunity, thus compromising airway homeostasis. Oxidative stress events reduce responsiveness to corticosteroids. These events can increase risk of asthma into adolescence and prompt evolution of asthma toward its most severe forms. Development of new therapies aimed to restore oxidant/antioxidant balance and active interventions aimed to improve physical activity and quality/quantity of food are all necessary strategies to prevent asthma onset and avoid in asthmatics evolution toward severe forms of the disease.

18.
Eur J Med Chem ; 247: 115018, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36577218

RESUMO

Targeting bromodomain-containing protein 9 (BRD9) represents a promising strategy for the development of new agents endowed with anticancer properties. With this aim, a set of 2,4,5-trisubstituted-2,4-dihydro-3H-1,2,4-triazol-3-one-based compounds was investigated following a combined approach that relied on in silico studies, chemical synthesis, biophysical and biological evaluation of the most promising items. The protocol was initially based on molecular docking experiments, accounting a library of 1896 potentially synthesizable items tested in silico against the bromodomain of BRD9. A first set of 21 compounds (1-21) was selected and the binding on BDR9 was assessed through AlphaScreen assays. The obtained results disclosed compounds 17 and 20 able to bind BRD9 in the submicromolar range (IC50 = 0.35 ± 0.18 µM and IC50 = 0.14 ± 0.03 µM, respectively) showing a promising selectivity profile when tested against further nine bromodomains. Taking advantage of 3D structure-based pharmacophore models, additional 10 derivatives were selected in silico for the synthetic step and binding assessment, highlighting seven compounds (22, 23, 25, 26, 28, 29, 31) able to selectively bind BRD9 among different bromodomains. The ability of the identified BRD9 binders to cross artificial membranes in vitro was also assessed, revealing a very good passive permeability profile. Preliminary studies were carried out on a panel of healthy and cancer human cell lines to explore the biological behavior of the selected compounds, disclosing a moderate activity and significant selectivity profile towards leukaemia cells. These results highlighted the applicability of the reported multidisciplinary approach for accelerating the selection of promising items and for driving the chemical synthesis of novel selective BRD9 binders. Moreover, the low molecular weight of the reported 2,4,5-trisubstituted-2,4-dihydro-3H-1,2,4-triazol-3-one-based BRD9 binders suggests the possibility for further exploring the chemical space in order to obtain new analogues with improved potency.


Assuntos
Fatores de Transcrição , Humanos , Linhagem Celular , Simulação de Acoplamento Molecular , Domínios Proteicos , Fatores de Transcrição/metabolismo , Triazóis
19.
Chemosphere ; 313: 137569, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36535497

RESUMO

Endocrine disruptors are chemicals widely used worldwide by industries in a variety of applications. Routinely exposure to these chemicals, even if at low doses, can cause damage effects on human health. In the present study, we evaluated toxic effects of nine chemicals, among which phthalates, using various cell lines to inspect their capability to interfere with cell proliferation and viability. Alongside, we investigated their affinity for phospholipids to assess the possible passage through biomembranes. Experimentally determined logkwIAM.MG values ranged from 1.37 to 3.49 whilst calculated log kwIAM.DD2 spanned from 1.80 to 5.21, supporting the target contaminants to exhibit lipophilicity moderate or very high. The achieved results were related to pharmacokinetic and toxicological properties by ADMET predictor™ and EPI Suite™ software. Triclosan and 4-Nonylphenol were found to be the most toxic against all cell lines screened, showing an IC50 of 30 µM for triclosan on human keratinocytes and of 50 µM for 4-Nonylphenol on human colorectal adenocarcinoma cells. Overall, even if the phthalates showed higher IC50 values (ranging from 170 µM to 280 µM), we can assert that all contaminants herein tested were able to interfere with cell growth and viability.


Assuntos
Disruptores Endócrinos , Triclosan , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Disruptores Endócrinos/toxicidade , Triclosan/toxicidade , Sobrevivência Celular , Membranas Artificiais , Interações Hidrofóbicas e Hidrofílicas
20.
Cancers (Basel) ; 14(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36358723

RESUMO

Salivary gland cancer (SGC) is an uncommon and heterogeneous disease that accounts for around 8.5% of all head and neck cancers. MicroRNAs (miRNAs) consist of a class of highly conserved, short, single-stranded segments (18-25 nucleotides) of noncoding RNA that represent key gene-transcription regulators in physiological and pathological human conditions. However, their role in SGC development and progression is not completely clear. This review aims to compile and summarize the recent findings on the topic, focusing on the prognostic and diagnostic value of the major modulated and validated microRNAs in SGC. Their differential expression could possibly aid the clinician in delivering an early diagnosis, therapeutic strategy and precision medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA