RESUMO
Lysosomes are degradative organelles that facilitate the removal and recycling of potentially cytotoxic materials and mediate a variety of other cellular processes, such as nutrient sensing, intracellular signaling, and lipid metabolism. Due to these central roles, lysosome dysfunction can lead to deleterious outcomes, including the accumulation of cytotoxic material, inflammation, and cell death. We previously reported that cationic amphiphilic drugs, such as imipramine, alter pH and lipid metabolism within macrophage lysosomes. Therefore, the ability for imipramine to induce changes to the lipid content of isolated macrophage lysosomes was investigated, focusing on sphingomyelin, cholesterol, and glycerophospholipid metabolism as these lipid classes have important roles in inflammation and disease. The lysosomes were isolated from control and imipramine-treated macrophages using density gradient ultracentrifugation, and mass spectrometry was used to measure the changes in their lipid composition. An unsupervised hierarchical cluster analysis revealed a clear differentiation between the imipramine-treated and control lysosomes. There was a significant overall increase in the abundance of specific lipids mostly composed of cholesterol esters, sphingomyelins, and phosphatidylcholines, while lysophosphatidylcholines and ceramides were overall decreased. These results support the conclusion that imipramine's ability to change the lysosomal pH inhibits multiple pH-sensitive enzymes in macrophage lysosomes.
Assuntos
Imipramina , Esfingomielinas , Humanos , Esfingomielinas/metabolismo , Imipramina/farmacologia , Colesterol/metabolismo , Macrófagos/metabolismo , Lisossomos/metabolismo , Inflamação/metabolismo , Metabolismo dos Lipídeos , Glicerofosfolipídeos/metabolismoRESUMO
Our objective is to evaluate the effects of feeding rumen-protected Met (RPM) throughout the transition period and early lactation on the lipid profile of the preimplantation embryos and the endometrial tissue of Holstein cows. Treatments consisted of feeding a total mixed ration with top-dressed RPM (Smartamine® M, Adisseo, Alpharetta, GA, United States; MET; n = 11; RPM at a rate of 0.08% of DM: Lys:Met = 2.8:1) or not (CON; n = 9, Lys:Met = 3.5:1). Endometrial biopsies were performed at 15, 30, and 73 days in milk (DIM). Prior to the endometrial biopsy at 73 DIM, preimplantation embryos were harvested via flushing. Endometrial lipid profiles were analyzed using multiple reaction monitoring-profiling and lipid profiles of embryos were acquired using matrix assisted laser desorption/ionization mass spectrometry. Relative intensities levels were used for principal component analysis. Embryos from cows in MET had greater concentration of polyunsaturated lipids than embryos from cows in CON. The endometrial tissue samples from cows in MET had lesser concentrations of unsaturated and monounsaturated lipids at 15 DIM, and greater concentration of saturated, unsaturated (specifically diacylglycerol), and monounsaturated (primarily ceramides) lipids at 30 DIM than the endometrial tissue samples from cows in CON. In conclusion, feeding RPM during the transition period and early lactation altered specific lipid classes and lipid unsaturation level of preimplantation embryos and endometrial tissue.
RESUMO
Fatty acids are an important source of energy and a key component of phospholipids in membranes and organelles. Saturated fatty acids (SFAs) are converted into unsaturated fatty acids (UFAs) by stearoyl Co-A desaturase (SCD), an enzyme active in cancer. Here, we studied how the dynamics between SFAs and UFAs regulated by SCD impacts ovarian cancer cell survival and tumor progression. SCD depletion or inhibition caused lower levels of UFAs vs. SFAs and altered fatty acyl chain plasticity, as demonstrated by lipidomics and stimulated Raman scattering (SRS) microscopy. Further, increased levels of SFAs resulting from SCD knockdown triggered endoplasmic reticulum (ER) stress response with brisk activation of IRE1α/XBP1 and PERK/eIF2α/ATF4 axes. Disorganized ER membrane was visualized by electron microscopy and SRS imaging in ovarian cancer cells in which SCD was knocked down. The induction of long-term mild ER stress or short-time severe ER stress by the increased levels of SFAs and loss of UFAs led to cell death. However, ER stress and apoptosis could be readily rescued by supplementation with UFAs and reequilibration of SFA/UFA levels. The effects of SCD knockdown or inhibition observed in vitro translated into suppression of intraperitoneal tumor growth in ovarian cancer xenograft models. Furthermore, a combined intervention using an SCD inhibitor and an SFA-enriched diet initiated ER stress in tumors growing in vivo and potently blocked their dissemination. In all, our data support SCD as a key regulator of the cancer cell fate under metabolic stress and point to treatment strategies targeting the lipid balance.
Assuntos
Sobrevivência Celular , Endorribonucleases , Ácidos Graxos Insaturados , Neoplasias Ovarianas , Progressão da Doença , Ácidos Graxos Dessaturases , Ácidos Graxos/farmacologia , Ácidos Graxos Insaturados/farmacologia , Feminino , Humanos , Fosfolipídeos , Proteínas Serina-Treonina Quinases , Estearoil-CoA Dessaturase/metabolismoRESUMO
The aim of this work was to compare the lipidome and metabolome profiling in the Longissimus thoracis muscle early and late postmortem from high and normal ultimate pH (pHu) beef. Lipid profiling discriminated between high and normal pHu beef based on fatty acid metabolism and mitochondrial beta-oxidation of long chain saturated fatty acids at 30 min postmortem, and phospholipid biosynthesis at 44 h postmortem. Metabolite profiling also discriminated between high and normal pHu beef, mainly through glutathione, purine, arginine and proline, and glycine, serine and threonine metabolisms at 30 min postmortem, and glycolysis, TCA cycle, glutathione, tyrosine, and pyruvate metabolisms at 44 h postmortem. Lipid and metabolite profiles showed reduced glycolysis and increased use of alternative energy metabolic processes that were central to differentiating high and normal pHu beef. Phospholipid biosynthesis modification suggested high pHu beef experienced greater oxidative stress.
Assuntos
Lipidômica , Metaboloma , Animais , Bovinos , Concentração de Íons de Hidrogênio , Glutationa/metabolismo , Fosfolipídeos , Músculo Esquelético/metabolismoRESUMO
Nanoparticles (NPs) interact with biomolecules by forming a biocorona (BC) on their surface after introduction into the body and alter cell interactions and toxicity. Metabolic syndrome (MetS) is a prevalent condition and enhances susceptibility to inhaled exposures. We hypothesize that distinct NP-biomolecule interactions occur in the lungs due to MetS resulting in the formation of unique NP-BCs contributing to enhanced toxicity. Bronchoalveolar lavage fluid (BALF) was collected from healthy and MetS mouse models and used to evaluate variations in the BC formation on 20 nm iron oxide (Fe3O4) NPs. Fe3O4 NPs without or with BCs were characterized for hydrodynamic size and zeta potential. Unique and differentially associated proteins and lipids with the Fe3O4 NPs were identified through proteomic and lipidomic analyses to evaluate BC alterations based on disease state. A mouse macrophage cell line was utilized to examine alterations in cell interactions and toxicity due to BCs. Exposures to 6.25, 12.5, 25, and 50 µg/mL of Fe3O4 NPs with BCs for 1 h or 24 h did not demonstrate overt cytotoxicity. Macrophages increasingly associated Fe3O4 NPs following addition of the MetS BC compared to the healthy BC. Macrophages exposed to Fe3O4 NPs with a MetS-BC for 1 h or 24 h at a concentration of 25 µg/mL demonstrated enhanced gene expression of inflammatory markers: CCL2, IL-6, and TNF-α compared to Fe3O4 NPs with a healthy BC. Western blot analysis revealed activation of STAT3, NF-κB, and ERK pathways due to the MetS-BC. Specifically, the Jak/Stat pathway was the most upregulated inflammatory pathway following exposure to NPs with a MetS BC. Overall, our study suggests the formation of distinct BCs due to NP exposure in MetS, which may contribute to exacerbated inflammatory effects and susceptibility.
RESUMO
The embryonic environment can modify cancer cell metabolism, and it is reported to induce the loss of tumorigenic properties and even affect the differentiation of cancer cells into normal tissues. The cellular mechanisms related to this remarkable phenomenon, which is likely mediated by cell-to-cell communication, have been previously investigated with particular focus on the proteins and genes involved. In this study we report the optimization and results of a straightforward in vitro system where mouse prostate carcinoma (RM-1) cells were co-cultured for three days with preimplantation mouse embryos or spiked with deproteinated extracts from mouse blastocysts. Compared to controls, both treatments induced RM-1 cells to increase the expression of the SOX-2 gene, which is related to cellular stemness, as well as altered their lipid composition. Specific acyl-carnitines, diacylglycerols, phosphatidylglycerols, phosphatidylinositols, phosphatidylserines and cardiolipins selected using an elastic net model discriminated the treated RM-1 cells from controls. Note that the tumorigenic properties of the treated RM-1 cells were not evaluated in this research. Due to the nature of the lipids impacted in the treated RM-1 cells, we hypothesize that mitochondrial metabolism has been altered, and that small molecules both secreted from and present within the embryos might be involved in the induction of metabolic changes observed in the RM-1 cells. These molecules, which could influence cancer cell metabolism, may still be unknown (i.e. structure, role).
Assuntos
Blastocisto , Desenvolvimento Embrionário , Animais , Blastocisto/metabolismo , Técnicas de Cocultura , Desenvolvimento Embrionário/genética , Lipídeos , Masculino , CamundongosRESUMO
Extracellular vesicles (EVs) convey information used in cell-to-cell interactions. Lipid analysis of EVs remains challenging because of small sample amounts available. Lipid discovery using traditional mass spectrometry platforms based on liquid chromatography and high mass resolution typically employs milligram sample amounts. We report a simple workflow for lipid profiling of EVs based on multiple reaction monitoring (MRM) profiling that uses microgram amounts of sample. After liquid-liquid extraction, individual EV samples were injected directly into the electrospray ionization (ESI) ion source at low flow rates (10 µl/min) and screened for 197 MRM transitions chosen to be a characteristic of several classes of lipids. This choice was based on a discovery experiment, which applied 1,419 MRMs associated with multiple lipid classes to a representative pooled sample. EVs isolated from 12 samples of human lymphocytes and 16 replicates from six different rat cells lines contained an estimated amount of total lipids of 326 to 805 µg. Samples showed profiles that included phosphatidylcholine (PC), sphingomyelin (SM), cholesteryl ester (CE), and ceramide (Cer) lipids, as well as acylcarnitines. The lipid profiles of human lymphocyte EVs were distinguishable using principal component and cluster analysis in terms of prior antibody and drug exposure. Lipid profiles of rat cell lines EV's were distinguishable by their tissue of origin.
Assuntos
Vesículas Extracelulares/química , Lipídeos/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Humanos , Lipídeos/química , Extração Líquido-Líquido , Linfócitos/química , Linfócitos/citologia , Análise de Componente Principal , RatosRESUMO
Secretions of the endometrium are vital for peri-implantation growth and development of the sheep conceptus. Extracellular vesicles (EVs) are present in the uterine lumen, emanate from both the endometrial epithelia of the uterus and trophectoderm of the conceptus, and hypothesized to mediate communication between those cell types during pregnancy establishment in sheep. Size-exclusion chromatography and nanoparticle tracking analysis determined that total EV number in the uterine lumen increased from days 10 to 14 of the cycle but was lower on days 12 and 14 of pregnancy in sheep. Intrauterine infusions of interferon tau (IFNT) did not affect total EV number in the uterine lumen. Quantitative mass spectrometric analyses defined proteins and lipids in EVs isolated from the uterine lumen of day 14 cyclic and pregnant sheep. In vitro analyses found that EVs decreased ovine trophectoderm cell proliferation and increased IFNT production without effects on gene expression as determined by RNA-seq. Collective results support the idea EVs impact conceptus growth during pregnancy establishment via effects on trophectoderm cell growth.
Assuntos
Ciclo Estral/fisiologia , Vesículas Extracelulares/fisiologia , Prenhez , Ovinos , Útero/citologia , Animais , Western Blotting , Proliferação de Células , Endométrio/fisiologia , Feminino , Interferon Tipo I , Gravidez , Proteínas da GravidezRESUMO
Chemical imaging by mass spectrometry (MS) has been largely used to study diseases in animals and humans, especially cancer; however, this technology has been minimally explored to study the complex chemical changes associated with fetal development. In this work, we report the histologically-compatible chemical imaging of small molecules by desorption electrospray ionization (DESI) - MS of a complete swine fetus at 50 days of gestation. Tissue morphology was unperturbed by morphologically-friendly DESI-MS analysis while allowing detection of a wide range of small molecules. We observed organ-dependent localization of lipids, e.g. a large diversity of phosphatidylserine lipids in brain compared to other organs, as well as metabolites such as N-acetyl-aspartic acid in the developing nervous system and N-acetyl-L-glutamine in the heart. Some lipids abundant in the lungs, such as PC(32:0) and PS(40:6), were similar to surfactant composition reported previously. Sulfatides were highly concentrated in the fetus liver, while hexoses were barely detected at this organ but were abundant in lung and heart. The chemical information on small molecules recorded via DESI-MS imaging coupled with traditional anatomical evaluation is a powerful source of bioanalytical information which reveals the chemical changes associated with embryonic and fetal development that, when disturbed, causes congenital diseases such as spina bifida and cleft palate.
Assuntos
Feto/anatomia & histologia , Feto/metabolismo , Lipídeos/química , Suínos/anatomia & histologia , Suínos/metabolismo , Animais , Encéfalo/anatomia & histologia , Encéfalo/metabolismo , Desenvolvimento Embrionário/fisiologia , Feminino , Gravidez , Espectrometria de Massas por Ionização por Electrospray/métodosRESUMO
Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been shown to be an alternative method for identification of bacteria via their protein profile spectra, being able to identify bacteria at the genus, species and even at subspecies level. With the aim of large-scale identification of pathogens causing mastitis by this platform, a total of 305 isolates of bacteria identified from cows with subclinical mastitis were analyzed by conventional microbiological culture (MC) as well as by MALDI-TOF MS coupled with Biotyper data processing. Approximately 89% of the identifications performed by MALDI-TOF MS were consistent with results obtained by MC. From the remaining isolates (11%), 6.3% of isolates were classified as misidentified (discordance for both genus and species level), and 4.7% showed identification agreement at the genus level but not at the species level, being classified as unidentified at species level. The disagreement results were mostly associated with identification of Streptococcus and Enterococcus species probably due to the narrow phenotypic similarity between these two genera. These disagreement results suggest that biochemical assays might be prone to identification errors and, MALDI-TOF MS therefore may be an alternative to overcome incorrect species-specific identification. Standard microbiological methods for bovine mastitis diagnosis are time consuming, laborious and prone to errors for some bacteria genera. In our study, we showed that MALDI-TOF MS coupled with Biotyper may be an alternative method for large-scale identification of bacteria isolated from milk samples compared to classical microbiological routine protocols.(AU)
A espectrometria de massas (MALDI-TOF MS) tem mostrado ser um método alternativo para a identificação de bactérias, sendo capaz de identificar as bactérias causadoras de mastite em gênero, espécie ou até mesmo subespécie. Com o objetivo de identificar os patógenos causadores de mastite em grande-escala por esta plataforma, um total de 305 isolados bacterianos oriundos de vacas com mastite subclínica foram analisados pela cultura microbiológica convencional (CM) e pela MALDI-TOF MS acoplada ao software Biotyper. Aproximadamente 89% das identificações realizadas pela MALDI-TOF MS foram consistentes com os resultados obtidos pela CM. Do restante de isolados bacterianos (11%), 6,3% foram classificados como identificação errônea (discordância de gênero e espécie), e 4,7% apresentaram concordância de gênero, mas discordância da espécie. Os resultados que apresentaram divergência estavam mais associados com a identificação das espécies de Streptococcus spp. e Enterococcus spp. devido à similaridade fenotípica entre os dois gêneros. Estes resultados divergentes sugerem que os ensaios bioquímicos podem ser propensos a erros de identificação, por isso a MALDI-TOF MS pode ser considerada um método alternativo para superar os erros de identificação da CM. A cultura microbiológica padrão e os ensaios bioquímicos utilizados na identificação de agentes causadores de mastite são demorados, trabalhosos e propensos a erros quando utilizados na identificação em nível de espécie. No presente estudo, demonstramos que a MALDI-TOF MS acoplada ao software Biotyper pode ser considerada um método alternativo de identificação de bactérias causadoras de mastite em grande-escala quando comparado com a cultura microbiológica convencional.(AU)
Assuntos
Animais , Bovinos , Análise Espectral/estatística & dados numéricos , Mastite/diagnóstico , Mastite/veterináriaRESUMO
Data presented in this article are related with the research article entitled "Effect of soybean phosphatidylcholine on lipid profile of bovine oocytes matured in vitro" [1]. This article describes the differences in the relative abundance of the lipid ions detected by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) in control and Lα-phosphatidylcholine-treated oocytes. In addition, the fatty acids (FA) content in pure Lα-phosphatidylcholine supplement and oocytes was analyzed by gas chromatography-flame ionization detection (GC-FID). The dataset provides information and inputs for further studies aiming to optimize in vitro maturation conditions and cryotolerance of mammalian oocytes.
RESUMO
RATIONALE: We describe multiple reaction monitoring (MRM)-profiling, which provides accelerated discovery of discriminating molecular features, and its application to human polycystic ovary syndrome (PCOS) diagnosis. The discovery phase of the MRM-profiling seeks molecular features based on some prior knowledge of the chemical functional groups likely to be present in the sample. It does this through use of a limited number of pre-chosen and chemically specific neutral loss and/or precursor ion MS/MS scans. The output of the discovery phase is a set of precursor/product transitions. In the screening phase these MRM transitions are used to interrogate multiple samples (hence the name MRM-profiling). METHODS: MRM-profiling was applied to follicular fluid samples of 22 controls and 29 clinically diagnosed PCOS patients. Representative samples were delivered by flow injection to a triple quadrupole mass spectrometer set to perform a number of pre-chosen and chemically specific neutral loss and/or precursor ion MS/MS scans. The output of this discovery phase was a set of 1012 precursor/product transitions. In the screening phase each individual sample was interrogated for these MRM transitions. Principal component analysis (PCA) and receiver operating characteristic (ROC) curves were used for statistical analysis. RESULTS: To evaluate the method's performance, half the samples were used to build a classification model (testing set) and half were blinded (validation set). Twenty transitions were used for the classification of the blind samples, most of them (N = 19) showed lower abundances in the PCOS group and corresponded to phosphatidylethanolamine (PE) and phosphatidylserine (PS) lipids. Agreement of 73% with clinical diagnosis was found when classifying the 26 blind samples. CONCLUSIONS: MRM-profiling is a supervised method characterized by its simplicity, speed and the absence of chromatographic separation. It can be used to rapidly isolate discriminating molecules in healthy/disease conditions by tailored screening of signals associated with hundreds of molecules in complex samples.
Assuntos
Biomarcadores/análise , Síndrome do Ovário Policístico/química , Síndrome do Ovário Policístico/diagnóstico , Espectrometria de Massas em Tandem/métodos , Estudos de Casos e Controles , Feminino , Líquido Folicular/química , Glicolipídeos/análise , Humanos , Análise de Componente Principal , Curva ROCRESUMO
Polybromo-1 (PBRM1) is a component of the PBAF (Polybromo-associated-BRG1- or BRM-associated factors) chromatin remodeling complex and is the second most frequently mutated gene in clear-cell renal cell Carcinoma (ccRCC). Mutation of PBRM1 is believed to be an early event in carcinogenesis, however its function as a tumor suppressor is not understood. In this study, we have employed Next Generation Sequencing to profile the differentially expressed genes upon PBRM1 re-expression in a cellular model of ccRCC. PBRM1 re-expression led to upregulation of genes involved in cellular adhesion, carbohydrate metabolism, apoptotic process and response to hypoxia, and a downregulation of genes involved in different stages of cell division. The decrease in cellular proliferation upon PBRM1 re-expression was confirmed, validating the functional role of PBRM1 as a tumor suppressor in a cell-based model. In addition, we identified a role for PBRM1 in regulating metabolic pathways known to be important for driving ccRCC, including the regulation of hypoxia response genes, PI3K signaling, glucose uptake, and cholesterol homeostasis. Of particular novelty is the identification of cell adhesion as a major downstream process uniquely regulated by PBRM1 expression. Cytoskeletal reorganization was induced upon PBRM1 reexpression as evidenced from the increase in the number of cells displaying cortical actin, a hallmark of epithelial cells. Genes involved in cell adhesion featured prominently in our transcriptional dataset and overlapped with genes uniquely regulated by PBRM1 in clinical specimens of ccRCC. Genes involved in cell adhesion serve as tumor suppressor and maybe involved in inhibiting cell migration. Here we report for the first time genes linked to cell adhesion serve as downstream targets of PBRM1, and hope to lay the foundation of future studies focusing on the role of chromatin remodelers in bringing about these alterations during malignancies.
Assuntos
Carcinoma de Células Renais/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/genética , Rim/patologia , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Apoptose , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Adesão Celular , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Colesterol/metabolismo , Proteínas de Ligação a DNA , Glicólise , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hipóxia/genética , Hipóxia/metabolismo , Hipóxia/patologia , Rim/metabolismo , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Mutação , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Mass spectrometry imaging is a powerful tool for investigating the spatial distribution of chemical compounds in a biological sample such as tissue. Two common goals of these experiments are unsupervised segmentation of images into newly discovered homogeneous segments and supervised classification of images into predefined classes. In both cases, the important secondary goals are to characterize the uncertainty associated with the segmentation and with the classification and to characterize the spectral features that define each segment or class. Recent analysis methods have focused on the spatial structure of the data to improve results. However, they either do not address these secondary goals or do this with separate post hoc procedures.We introduce spatial shrunken centroids, a statistical model-based framework for both supervised classification and unsupervised segmentation. It takes as input sets of previously detected, aligned, quantified, and normalized spectral features and expresses both spatial and multivariate nature of the data using probabilistic modeling. It selects informative subsets of spectral features that define each unsupervised segment or supervised class and quantifies and visualizes the uncertainty in spatial segmentations and in tissue classification. In the unsupervised setting, it also guides the choice of an appropriate number of segments. We demonstrate the usefulness of this framework in a supervised human renal cell carcinoma experimental dataset and several unsupervised experimental datasets, including a pig fetus cross-section, three rodent brains, and a controlled image with known ground truth. This framework is available for use within the open-source R package Cardinal as part of a full pipeline for the processing, visualization, and statistical analysis of mass spectrometry imaging experiments.
Assuntos
Íons/análise , Espectrometria de Massas/métodos , Algoritmos , Animais , Humanos , Processamento de Imagem Assistida por Computador , Modelos Estatísticos , Roedores , SuínosRESUMO
Golden retriever muscular dystrophy (GRMD) provides the best animal model for characterizing the disease progress of the human disorder, Duchenne muscular dystrophy (DMD). The purpose of this study was to determine steroid hormone concentration profiles in healthy golden retriever dogs (control group - CtGR) versus GRMD-gene carrier (CaGR) and affected female dogs (AfCR). Therefore, a sensitive and specific analytical method was developed and validated to determine the estradiol, progesterone, cortisol, and testosterone levels in the canine serum by isotope dilution liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). To more accurately understand the dynamic nature of the serum steroid profile, the fluctuating levels of these four steroid hormones over the estrous cycle were compared across the three experimental groups using a multivariate statistical analysis. The concentration profiles of estradiol, cortisol, progesterone, and testosterone revealed a characteristic pattern for each studied group at each specific estrous phase. Additionally, several important changes in the serum concentrations of cortisol and estradiol in the CaGR and AfCR groups seem to be correlated with the status and progression of the muscular dystrophy. A comprehensive and quantitative monitoring of steroid profiles throughout the estrous cycle of normal and GRMD dogs were achieved. Significant differences in these profiles were observed between GRMD and healthy animals, most notably for estradiol. These findings contribute to a better understanding of both dog reproduction and the muscular dystrophy pathology. Our data open new venues for hormonal behavior studies in dystrophinopathies and that may affect the quality of life of DMD patients.
Assuntos
Doenças do Cão/sangue , Doenças Genéticas Ligadas ao Cromossomo X/sangue , Hormônios/sangue , Marcação por Isótopo/métodos , Distrofia Muscular Animal/sangue , Esteroides/sangue , Espectrometria de Massas em Tandem/métodos , Animais , Cromatografia Líquida , Análise Discriminante , Cães , Feminino , Análise de Componente Principal , Reprodutibilidade dos TestesRESUMO
Imaging mass spectrometry (MS) is a powerful technique for mapping the spatial distributions of a wide range of chemical compounds simultaneously from a tissue section. Co-localization of the distribution of individual molecular species, including particular lipids and proteins, and correlation with the morphological features of a single tissue section are highly desirable for comprehensive tissue analysis and disease diagnosis. We now report on the use, in turn, of desorption electrospray ionization (DESI), matrix assisted laser desorption ionization (MALDI), and then optical microscopy to image lipid and protein distributions in a single tissue section. This is possible through the use of histologically compatible DESI solvent systems, which allow for sequential analyses of the same section by DESI then MALDI. Hematoxylin and eosin (H&E) staining was performed on the same section after removal of the MALDI matrix. This workflow allowed chemical information to be unambiguously matched to histological features in mouse brain tissue sections. The lipid sulfatide (24:1), detected at m/z 888.8 by DESI imaging, was colocalized with the protein MBP isoform 8, detected at m/z 14117 by MALDI imaging, in regions corresponding to the corpus callosum substructure of the mouse brain, as confirmed in the H&E images. Correlation of lipid and protein distributions with histopathological features was also achieved for human brain cancer samples. Higher tumor cell density was observed in regions demonstrating higher relative abundances of oleic acid, detected by DESI imaging at m/z 281.4, and the protein calcyclin, detected by MALDI at m/z 10085, for a human glioma sample. Since correlation between molecular signatures and disease state can be achieved, we expect that this methodology will significantly enhance the value of MS imaging in molecular pathology for diagnosis.