Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neurotox Res ; 39(6): 1946-1958, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34637050

RESUMO

The spontaneously hypertensive rat (SHR) is an excellent animal model that mimics the behavioral and neurochemical phenotype of attention-deficit/hyperactivity disorder (ADHD). Here, we characterized the striatal GABA transport of SHR and investigated whether caffeine, a non-selective antagonist of adenosine receptors, could influence GABAergic circuitry. For this purpose, ex vivo striatal slices of SHR and Wistar (control strain) on the 35th postnatal day were dissected and incubated with [3H]-GABA to quantify the basal levels of uptake and release. SHR exhibited a reduced [3H]-GABA uptake and release, suggesting a defective striatal GABAergic transport system. GAT-1 appears to be the primary transporter for [3H]-GABA uptake in SHR striatum, as GAT-1 selective blocker, NO-711, completely abolished it. We also verified that acute exposure of striatal slices to caffeine improved [3H]-GABA uptake and release in SHR, whereas Wistar rats were not affected. GABA-uptake increase and cAMP accumulation promoted by caffeine was reverted by A1R activation with N6-cyclohexyl adenosine (CHA). As expected, the pharmacological blockade of cAMP-PKA signaling by H-89 also prevented caffeine-mediated [3H]-GABA uptake increment. Interestingly, a single caffeine exposure did not affect GAT-1 or A1R protein density in SHR, which was not different from Wistar protein levels, suggesting that the GAT-1-dependent transport in SHR has a defective functional activity rather than lower protein expression. The current data support that caffeine regulates GAT-1 function and improves striatal GABA transport via A1R-cAMP-PKA signaling, specifically in SHR. These results reinforce that caffeine may have therapeutic use in disorders where the GABA transport system is impaired.


Assuntos
Cafeína/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , Corpo Estriado/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo , Animais , Western Blotting , Corpo Estriado/metabolismo , Feminino , Masculino , Ratos , Ratos Endogâmicos SHR , Ratos Wistar
2.
Neurotox Res ; 38(3): 824-832, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32696437

RESUMO

Cocaine (COC) is a psychostimulant that acts by increasing catecholaminergic neurotransmission mainly due to its effects on the dopamine transporter (DAT). However, other neurotransmitter systems may also be regulated by COC, including the GABAergic system. Since the effect of COC in modulating gamma-aminobutyric acid (GABA) reuptake is not defined, we investigated the molecular mechanisms related to the increase in GABA uptake induced by acute COC exposure and its effects on locomotor activity in adolescent mice. Behavioral experiments showed that COC increased locomotor activity and decreased immobilization time in mice. A single COC exposure reduced both GABA uptake and GAT-1 protein levels. On the other hand, cyclic adenosine monophosphate (cAMP) levels increased after a COC challenge. The major changes induced by acute COC on behavioral and neurochemical assays were avoided by previous treatment with the selective D1 receptor antagonist SCH-23390 (0.5 mg/kg). Our findings suggest that GABA uptake naturally decreases during mice development from preadolescence until adulthood and that dopamine (DA) D1-like receptors are key players in the regulation of GABA uptake levels following a single COC exposure in adolescent mice.


Assuntos
Cocaína/farmacologia , Dopamina/metabolismo , Lobo Frontal/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Ácido gama-Aminobutírico/efeitos dos fármacos , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Cocaína/administração & dosagem , Proteínas da Membrana Plasmática de Transporte de Dopamina/efeitos dos fármacos , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Lobo Frontal/metabolismo , Camundongos , Atividade Motora/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo
3.
Neurochem Int ; 131: 104550, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31563462

RESUMO

Caffeine is the most consumed psychostimulant drug in the world, acting as a non-selective antagonist of adenosine receptors A1R and A2AR, which are widely expressed in retinal layers. We have previously shown that caffeine, when administered acutely, acts on A1R to potentiate the NMDA receptor-induced GABA release. Now we asked if long-term caffeine exposure also modifies GABA uptake in the avian retina and which mechanisms are involved in this process. Chicken embryos aged E11 were injected with a single dose of caffeine (30 mg/kg) in the air chamber. Retinas were dissected on E15 for ex vivo neurochemical assays. Our results showed that [3H]-GABA uptake was dependent on Na+ and blocked at 4 °C or by NO-711 and caffeine. This decrease was observed after 60 min of [3H]-GABA uptake assay at E15, which is accompanied by an increase in [3H]-GABA release. Caffeine increased the protein levels of A1R without altering ADORA1 mRNA and was devoid of effects on A2AR density or ADORA2A mRNA levels. The decrease of GABA uptake promoted by caffeine was reverted by A1R activation with N6-cyclohexyl adenosine (CHA) but not by A2AR activation with CGS 21680. Caffeine exposure increased cAMP levels and GAT-1 protein levels, which was evenly expressed between E11-E15. As expected, we observed an increase of GABA containing amacrine cells and processes in the IPL, also, cAMP pathway blockage by H-89 decreased caffeine mediated [3H]-GABA uptake. Our data support the idea that chronic injection of caffeine alters GABA transport via A1R during retinal development and that the cAMP/PKA pathway plays an important role in the regulation of GAT-1 function.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Antagonistas de Receptores de Angiotensina/farmacologia , Cafeína/farmacologia , Estimulantes do Sistema Nervoso Central/farmacologia , AMP Cíclico/fisiologia , Ácido gama-Aminobutírico/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacologia , Células Amácrinas/efeitos dos fármacos , Células Amácrinas/metabolismo , Animais , Cafeína/antagonistas & inibidores , Embrião de Galinha , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Fenetilaminas/farmacologia , Receptor A1 de Adenosina/efeitos dos fármacos , Receptor A1 de Adenosina/metabolismo , Receptor Tipo 1 de Angiotensina/efeitos dos fármacos , Receptores A2 de Adenosina/efeitos dos fármacos , Receptores A2 de Adenosina/metabolismo , Retina/efeitos dos fármacos , Retina/embriologia , Retina/crescimento & desenvolvimento , Transdução de Sinais/efeitos dos fármacos
4.
Neuroscience ; 337: 285-294, 2016 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-27663541

RESUMO

l-Glutamate and l-aspartate are the main excitatory amino acids (EAAs) in the Central Nervous System (CNS) and their uptake regulation is critical for the maintenance of the excitatory balance. Excitatory amino acid transporters (EAATs) are widely distributed among central neurons and glial cells. GLAST and GLT1 are expressed in glial cells, whereas excitatory amino acid transporter 3/excitatory amino acid carrier 1 (EAAT3/EAAC1) is neuronal. Different signaling pathways regulate glutamate uptake by modifying the activity and expression of EAATs. In the present work we show that immature postnatal day 3 (PN3) rat retinas challenged by l-glutamate release [3H]-d-Aspartate linked to the reverse transport, with participation of NMDA, but not of non-NMDA receptors. The amount of [3H]-d-Aspartate released by l-glutamate is reduced during retinal development. Moreover, immature retinae at PN3 and PN7, but not PN14, exposed to a single dose of 200 or 500µM caffeine or the selective A2A receptor (A2AR) antagonist 100nM ZM241385 decreased [3H]-d-Aspartate uptake. Caffeine also selectively increased total expression of EAAT3 at PN7 and its expression in membrane fractions. However, both EAAT1 and EAAT2 were reduced after caffeine treatment in P2 fraction. Addition of 100nM DPCPX, an A1 receptor (A1R) antagonist, had no effect on the [3H]-d-Aspartate uptake. [3H]-d-Aspartate release was dependent on both extracellular sodium and Dl-TBOA, but not calcium, implying a transporter-mediated mechanism. Our results suggest that in the developing rat retina caffeine modulates [3H]-d-Aspartate uptake by blocking adenosine A2AR.


Assuntos
Ácido Aspártico/metabolismo , Cafeína/farmacologia , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Ácido Glutâmico/metabolismo , Retina/efeitos dos fármacos , Animais , Transporte Biológico/efeitos dos fármacos , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Neuroglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Retina/metabolismo , Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA