Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pediatr Hematol Oncol ; 44(3): e719-e722, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34966090

RESUMO

About 25% of the patients with the translocation t(11;19)(q23;p13.3)/KMT2A-MLLT1 present three-way or more complex fusions, associated with a worse prognosis, suggesting that a particular mechanism creates functional KMT2A fusions for this condition. In this work, we show a cryptic three-way translocation t(9;11;19). Interestingly, long-distance inverse polymerase chain reaction sequencing revealed a KMT2A-MLLT1 and the yet unreported out-of-frame SEC16A-KMT2A fusion, associated with low SEC16A expression and KMT2A overexpression, in an infant with B-acute lymphoblastic leukemia presenting a poor prognosis. Our case illustrates the importance of molecular cytogenetic tests in selecting cases for further investigations, which could open perspectives regarding novel therapeutic approaches for poor prognosis childhood leukemias.


Assuntos
Retículo Endoplasmático , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Humanos , Lactente , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Fatores de Transcrição/genética , Translocação Genética , Proteínas de Transporte Vesicular
2.
Int J Mol Sci ; 22(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34830027

RESUMO

Breast cancer (BC) is a heterogeneous disease composed of multiple subtypes with different molecular characteristics and clinical outcomes. The metastatic process in BC depends on the transcription factors (TFs) related to epithelial-mesenchymal transition (EMT), including the master regulator Twist1. However, its role beyond EMT in BC subtypes remains unclear. Our study aimed to investigate the role of Twist1, beyond EMT, in the molecular subtypes of BC. In patients, we observed the overexpression of TWIST1 in the HER2+ group. The silencing of TWIST1 in HER2+ BC cells resulted in the upregulation of 138 genes and the downregulation of 174 genes compared to control cells in a microarray assay. In silico analysis revealed correlations between Twist1 and important biological processes such as the Th17-mediated immune response, suggesting that Twist1 could be relevant for IL-17 signaling in HER2+ BC. IL-17 signaling was then examined, and it was shown that TWIST1 knockdown caused the downregulation of leading members of IL-17 signaling pathway. Taken together, our findings suggest that Twist1 plays a role on IL-17 signaling in HER2+ BC.


Assuntos
Neoplasias da Mama/imunologia , Regulação Neoplásica da Expressão Gênica/imunologia , Interleucina-17/imunologia , Proteínas Nucleares/imunologia , Receptor ErbB-2/imunologia , Transdução de Sinais/imunologia , Proteína 1 Relacionada a Twist/imunologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Interleucina-17/genética , Proteínas Nucleares/genética , Receptor ErbB-2/genética , Transdução de Sinais/genética , Proteína 1 Relacionada a Twist/genética
4.
Genes (Basel) ; 9(7)2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29949949

RESUMO

Oxidative stress (OS) is an indispensable condition to ensure genomic instability in cancer cells. In breast cancer (BC), redox alterations have been widely characterized, but since this process results from a chain of inflammatory events, the causal molecular triggers remain to be identified. In this context, we used a microarray approach to investigate the role of the main pro-oxidant transcription factor, nuclear factor-kappa B (NF-κB), in gene profiles of BC subtypes. Our results showed that NF-κB knockdown in distinct BC subtypes led to differential expression of relevant factors involved in glutathione metabolism, prostaglandins, cytochrome P450 and cyclooxygenase, suggesting a relationship between the redox balance and NF-κB in such cells. In addition, we performed biochemical analyses to validate the microarray dataset focusing on OS and correlated these parameters with normal expression or NF-κB inhibition. Our data showed a distinct oxidative status pattern for each of the three studied BC subtype models, consistent with the intrinsic characteristics of each BC subtype. Thus, our findings suggest that NF-κB may represent an additional mechanism related to OS maintenance in BC, operating in various forms to mediate other important predominant signaling components of each BC subtype.

5.
Cancer Genet ; 221: 25-30, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29405993

RESUMO

Myeloid neoplasms are a heterogeneous group of hematologic disorders with divergent patterns of cell differentiation and proliferation, as well as divergent clinical courses. Rare recurrent genetic abnormalities related to this group of cancers are associated with poor outcomes. One such abnormality is the MECOM gene rearrangement that typically occurs in cases with chromosome 7 abnormalities. MECOM encodes a transcription factor that plays an essential role in cell proliferation and maintenance and also in epigenetic regulation. Aberrant expression of this gene is associated with reduced survival. Hence, its detailed characterization provides biological and clinical information relevant to the management of pediatric myeloid neoplasms. In this work, we describe a rare karyotype harboring three copies of MECOM with overexpression of the gene in a child with a very aggressive myeloid neoplasm. Cytogenetic studies defined the karyotype as 46,XX,der(7)t(3;7)(q26.2;q21.2). Array comparative genomic hybridization (aCGH) revealed a gain of 26.04 Mb in the 3q26.2-3qter region and a loss of 66.6 Mb in the 7q21.2-7qter region. RT-qPCR analysis detected elevated expression of the MECOM and CDK6 genes (458.5-fold and 35.2-fold, respectively). Overall, we show the importance of performing detailed molecular cytogenetic analysis of MECOM to enable appropriate management of high-risk pediatric myeloid neoplasms.


Assuntos
Análise Citogenética/métodos , Proteína do Locus do Complexo MDS1 e EVI1/genética , Transtornos Mieloproliferativos/genética , Pré-Escolar , Feminino , Humanos
6.
Genes (Basel) ; 9(1)2018 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-29315242

RESUMO

Nuclear Factor-kappa B (NF-κB) is a transcription factor family that regulates a large number of genes that are involved in important physiological processes, including survival, inflammation, and immune responses. More recently, constitutive expression of NF-κB has been associated with several types of cancer. In addition, microorganisms, such as viruses and bacteria, cooperate in the activation of NF-κB in tumors, confirming the multifactorial role of this transcription factor as a cancer driver. Recent reports have shown that the NF-κB signaling pathway should receive attention for the development of therapies. In addition to the direct effects of NF-κB in cancer cells, it might also impact immune cells that can both promote or prevent tumor development. Currently, with the rise of cancer immunotherapy, the link among immune cells, inflammation, and cancer is a major focus, and NF-κB could be an important regulator for the success of these therapies. This review discusses the contrasting roles of NF-κB as a regulator of pro- and antitumor processes and its potential as a therapeutic target.

7.
Cytogenet Genome Res ; 152(1): 33-37, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28595195

RESUMO

Pediatric acute myeloid leukemia (AML) is a highly heterogeneous disease, presenting cytogenetic and molecular abnormalities which turned out to be critical prognostic factors. Ploidy changes as gain or loss of individual chromosomes are rare in AML, occurring only in about 1-2% of the affected children. Hyperdiploid karyotypes are exceedingly rare in infants less than 12 months of age. In this age group, structural rearrangements involving the KMT2A gene occur in about 58% of the cases. Among them, the translocation t(9;11)(p22;q23), KMT2A-MLLT3, is the most common abnormality accounting for approximately 22% of KMT2A rearrangements in infant AML cases. Here, we describe a 7- month-old girl with a history of fever and severe diarrhea, and a physical examination remarkable for pallor and hepatosplenomegaly. A novel complex hyperdiploid karyotype 53,XX,+X,+6,t(9;11)(p21.3;q23.3),+der(9)t(9;11)(p21.3;q23.3),dup(13)(q31q34),+14,+19,+21,+22 was characterized by high-resolution molecular cytogenetic approaches. Fluorescence in situ hybridization, multiplex-FISH, and multicolor chromosome banding were applied, revealing 2 reverse MLLT3-KMT2A fusions and a duplication of the GAS6 oncogene. Our work suggests that molecular cytogenetic studies are crucial for the planning of a proper strategy for risk therapy in AML infants with hyperdiploid karyotypes.


Assuntos
Duplicação Cromossômica , Análise Citogenética/métodos , Diploide , Peptídeos e Proteínas de Sinalização Intercelular/genética , Cariótipo , Leucemia Mieloide Aguda/genética , Proteínas Nucleares/genética , Oncogenes , Feminino , Rearranjo Gênico , Histona-Lisina N-Metiltransferase/genética , Humanos , Lactente , Proteína de Leucina Linfoide-Mieloide/genética , Translocação Genética
8.
PLoS One ; 12(1): e0169622, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28107418

RESUMO

The metastatic process in breast cancer is related to the expression of the epithelial-to-mesenchymal transition transcription factors (EMT-TFs) SNAIL, SLUG, SIP1 and TWIST1. EMT-TFs and nuclear factor-κB (NF-κB) activation have been associated with aggressiveness and metastatic potential in carcinomas. Here, we sought to examine the role of NF-κB in the aggressive properties and regulation of EMT-TFs in human breast cancer cells. Blocking NF-κB/p65 activity by reducing its transcript and protein levels (through siRNA-strategy and dehydroxymethylepoxyquinomicin [DHMEQ] treatment) in the aggressive MDA-MB-231 and HCC-1954 cell lines resulted in decreased invasiveness and migration, a downregulation of SLUG, SIP1, TWIST1, MMP11 and N-cadherin transcripts and an upregulation of E-cadherin transcripts. No significant changes were observed in the less aggressive cell line MCF-7. Bioinformatics tools identified several NF-κB binding sites along the promoters of SNAIL, SLUG, SIP1 and TWIST1 genes. Through chromatin immunoprecipitation and luciferase reporter assays, the NF-κB/p65 binding on TWIST1, SLUG and SIP1 promoter regions was confirmed. Thus, we suggest that NF-κB directly regulates the transcription of EMT-TF genes in breast cancer. Our findings may contribute to a greater understanding of the metastatic process of this neoplasia and highlight NF-κB as a potential target for breast cancer treatment.


Assuntos
Neoplasias da Mama/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , NF-kappa B/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Humanos , Regiões Promotoras Genéticas , Fatores de Transcrição/genética
9.
PLoS One ; 7(10): e48160, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23110199

RESUMO

The forkhead box (Fox) M1 gene belongs to a superfamily of evolutionarily conserved transcriptional regulators that are involved in a wide range of biological processes, and its deregulation has been implicated in cancer survival, proliferation and chemotherapy resistance. However, the role of FoxM1, the signaling involved in its activation and its role in leukemia are poorly known. Here, we demonstrate by gene promoter analysis, Electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assays that FoxM1 is a new target of the STAT3 transcriptional activator. Additionally, FoxM1 is transcriptionally dependent on STAT3 signaling activation. Furthermore, we verified that FoxM1 is crucial for K562 cell proliferation, cell cycle checkpoints and viability and could be related to chemotherapeutic resistance. By microarray analysis, we determined the signaling pathways related to FoxM1 expression and its role in DNA repair using K562 cells. Our results revealed new signaling involved in FoxM1 expression and its role in leukemic cells that elucidate cellular mechanisms associated with the development of leukemia and disease progression.


Assuntos
Sobrevivência Celular/fisiologia , Reparo do DNA/fisiologia , Fatores de Transcrição Forkhead/metabolismo , Fator de Transcrição STAT3/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiologia , Linhagem Celular , Proliferação de Células , Sobrevivência Celular/genética , Reparo do DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Proteína Forkhead Box M1 , Fatores de Transcrição Forkhead/genética , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas/genética , Fator de Transcrição STAT3/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA