Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 15(7)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39062740

RESUMO

Heme, an iron-containing tetrapyrrole, is essential in almost all organisms. Heme biosynthesis needs to be precisely regulated particularly given the potential cytotoxicity of protoporphyrin IX, the intermediate preceding heme formation. Here, we report on the porphyrin intermediate accumulation within the tumor microenvironment (TME), which we propose to result from dysregulation of heme biosynthesis concomitant with an enhanced cancer survival dependence on mid-step genes, a process we recently termed "Porphyrin Overdrive". Specifically, porphyrins build up in both lung cancer cells and stromal cells in the TME. Within the TME's stromal cells, evidence supports cancer-associated fibroblasts (CAFs) actively producing porphyrins through an imbalanced pathway. Conversely, normal tissues exhibit no porphyrin accumulation, and CAFs deprived of tumor cease porphyrin overproduction, indicating that both cancer and tumor-stromal porphyrin overproduction is confined to the cancer-specific tissue niche. The clinical relevance of our findings is implied by establishing a correlation between imbalanced porphyrin production and overall poorer survival in more aggressive cancers. These findings illuminate the anomalous porphyrin dynamics specifically within the tumor microenvironment, suggesting a potential target for therapeutic intervention.


Assuntos
Porfirinas , Microambiente Tumoral , Humanos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Heme/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Porfirinas/metabolismo , Protoporfirinas/metabolismo , Células Estromais/metabolismo , Células Estromais/patologia
3.
Life Sci Alliance ; 7(7)2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38649187

RESUMO

All cancer cells reprogram metabolism to support aberrant growth. Here, we report that cancer cells employ and depend on imbalanced and dynamic heme metabolic pathways, to accumulate heme intermediates, that is, porphyrins. We coined this essential metabolic rewiring "porphyrin overdrive" and determined that it is cancer-essential and cancer-specific. Among the major drivers are genes encoding mid-step enzymes governing the production of heme intermediates. CRISPR/Cas9 editing to engineer leukemia cell lines with impaired heme biosynthetic steps confirmed our whole-genome data analyses that porphyrin overdrive is linked to oncogenic states and cellular differentiation. Although porphyrin overdrive is absent in differentiated cells or somatic stem cells, it is present in patient-derived tumor progenitor cells, demonstrated by single-cell RNAseq, and in early embryogenesis. In conclusion, we identified a dependence of cancer cells on non-homeostatic heme metabolism, and we targeted this cancer metabolic vulnerability with a novel "bait-and-kill" strategy to eradicate malignant cells.


Assuntos
Sistemas CRISPR-Cas , Heme , Porfirinas , Humanos , Heme/metabolismo , Porfirinas/metabolismo , Porfirinas/farmacologia , Linhagem Celular Tumoral , Neoplasias/metabolismo , Neoplasias/genética , Redes e Vias Metabólicas/genética , Diferenciação Celular/genética , Edição de Genes , Animais , Camundongos
4.
F1000Res ; 8: 1135, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31824661

RESUMO

Background: Basic and clinical scientific research at the University of South Florida (USF) have intersected to support a multi-faceted approach around a common focus on rare iron-related diseases. We proposed a modified version of the National Center for Biotechnology Information's (NCBI) Hackathon-model to take full advantage of local expertise in building "Iron Hack", a rare disease-focused hackathon. As the collaborative, problem-solving nature of hackathons tends to attract participants of highly-diverse backgrounds, organizers facilitated a symposium on rare iron-related diseases, specifically porphyrias and Friedreich's ataxia, pitched at general audiences. Methods: The hackathon was structured to begin each day with presentations by expert clinicians, genetic counselors, researchers focused on molecular and cellular biology, public health/global health, genetics/genomics, computational biology, bioinformatics, biomolecular science, bioengineering, and computer science, as well as guest speakers from the American Porphyria Foundation (APF) and Friedreich's Ataxia Research Alliance (FARA) to inform participants as to the human impact of these diseases. Results: As a result of this hackathon, we developed resources that are relevant not only to these specific disease-models, but also to other rare diseases and general bioinformatics problems. Within two and a half days, "Iron Hack" participants successfully built collaborative projects to visualize data, build databases, improve rare disease diagnosis, and study rare-disease inheritance. Conclusions: The purpose of this manuscript is to demonstrate the utility of a hackathon model to generate prototypes of generalizable tools for a given disease and train clinicians and data scientists to interact more effectively.


Assuntos
Ataxia de Friedreich , Porfirias , Bases de Dados Factuais , Humanos , Ferro , Doenças Raras , Estados Unidos
5.
J Biol Chem ; 291(22): 11887-98, 2016 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-27026703

RESUMO

Frataxin is a mitochondrial iron-binding protein involved in iron storage, detoxification, and delivery for iron sulfur-cluster assembly and heme biosynthesis. The ability of frataxin from different organisms to populate multiple oligomeric states in the presence of metal ions, e.g. Fe(2+) and Co(2+), led to the suggestion that different oligomers contribute to the functions of frataxin. Here we report on the complex between yeast frataxin and ferrochelatase, the terminal enzyme of heme biosynthesis. Protein-protein docking and cross-linking in combination with mass spectroscopic analysis and single-particle reconstruction from negatively stained electron microscopic images were used to verify the Yfh1-ferrochelatase interactions. The model of the complex indicates that at the 2:1 Fe(2+)-to-protein ratio, when Yfh1 populates a trimeric state, there are two interaction interfaces between frataxin and the ferrochelatase dimer. Each interaction site involves one ferrochelatase monomer and one frataxin trimer, with conserved polar and charged amino acids of the two proteins positioned at hydrogen-bonding distances from each other. One of the subunits of the Yfh1 trimer interacts extensively with one subunit of the ferrochelatase dimer, contributing to the stability of the complex, whereas another trimer subunit is positioned for Fe(2+) delivery. Single-turnover stopped-flow kinetics experiments demonstrate that increased rates of heme production result from monomers, dimers, and trimers, indicating that these forms are most efficient in delivering Fe(2+) to ferrochelatase and sustaining porphyrin metalation. Furthermore, they support the proposal that frataxin-mediated delivery of this potentially toxic substrate overcomes formation of reactive oxygen species.


Assuntos
Ferroquelatase/química , Ferroquelatase/metabolismo , Heme/biossíntese , Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/metabolismo , Ferro/metabolismo , Saccharomyces cerevisiae/metabolismo , Cristalografia por Raios X , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Saccharomyces cerevisiae/crescimento & desenvolvimento , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Frataxina
6.
Biochim Biophys Acta ; 1864(5): 441-52, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26854603

RESUMO

5-Aminolevulinate synthase (ALAS), a pyridoxal 5'-phosphate (PLP)-dependent homodimeric enzyme, catalyzes the initial step of heme biosynthesis in non-plant eukaryotes. The precursor form of the enzyme is translated in the cytosol, and upon mitochondrial import, the N-terminal targeting presequence is proteolytically cleaved to generate mature ALAS. In bone marrow-derived erythroid cells, a mitochondrial- and site-specific endoprotease of yet unknown primary structure, produces a protein shorter than mature erythroid ALAS (ALAS2) found in peripheral blood erythroid cells. This truncated ALAS2 lacks the presequence and the N-terminal sequence (corresponding to ~7 KDa molecular mass) present in ALAS2 from peripheral blood erythroid cells. How the truncation affects the structural topology and catalytic properties of ALAS2 is presently not known. To address this question, we created a recombinant, truncated, murine ALAS2 (ΔmALAS2) devoid of the cleavable N-terminal region and examined its catalytic and biophysical properties. The N-terminal truncation of mALAS2 did not significantly affect the organization of the secondary structure, but a subtle reduction in the rigidity of the tertiary structure was noted. Furthermore, thermal denaturation studies revealed a decrease of 4.3°C in the Tm value of ΔmALAS2, implicating lower thermal stability. While the kcat of ΔmALAS2 is slightly increased over that of the wild-type enzyme, the slowest step in the ΔmALAS2-catalyzed reaction remains dominated by ALA release. Importantly, intrinsic disorder algorithms imply that the N-terminal region of mALAS2 is highly disordered, and thus susceptible to proteolysis. We propose that the N-terminal truncation offers a cell-specific ALAS2 regulatory mechanism without hindering heme synthesis.


Assuntos
5-Aminolevulinato Sintetase/química , 5-Aminolevulinato Sintetase/genética , Heme/biossíntese , Relação Estrutura-Atividade , 5-Aminolevulinato Sintetase/metabolismo , Animais , Células da Medula Óssea/enzimologia , Catálise , Células Eritroides/enzimologia , Heme/genética , Camundongos
7.
FEBS Open Bio ; 5: 824-31, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26605136

RESUMO

5-Aminolevulinate synthase (ALAS) catalyzes the initial step of mammalian heme biosynthesis, the condensation between glycine and succinyl-CoA to produce CoA, CO2, and 5-aminolevulinate. The crystal structure of Rhodobacter capsulatus ALAS indicates that the adenosyl moiety of succinyl-CoA is positioned in a mainly hydrophobic pocket, where the ribose group forms a putative hydrogen bond with Lys156. Loss-of-function mutations in the analogous lysine of human erythroid ALAS (ALAS2) cause X-linked sideroblastic anemia. To characterize the contribution of this residue toward catalysis, the equivalent lysine in murine ALAS2 was substituted with valine, eliminating the possibility of a hydrogen bond. The K221V substitution produced a 23-fold increase in the [Formula: see text] and a 97% decrease in [Formula: see text]. This reduction in the specificity constant does not stem from lower affinity toward succinyl-CoA, since the [Formula: see text] of K221V is lower than that of wild-type ALAS. For both enzymes, the [Formula: see text] value is significantly different from the [Formula: see text]. That K221V has stronger binding affinity for succinyl-CoA was further deduced from substrate protection studies, as K221V achieved maximal protection at lower succinyl-CoA concentration than wild-type ALAS. Moreover, it is the CoA, rather than the succinyl moiety, that facilitates binding of succinyl-CoA to wild-type ALAS, as evident from identical [Formula: see text] and [Formula: see text] values. Transient kinetic analyses of the K221V-catalyzed reaction revealed that the mutation reduced the rates of quinonoid intermediate II formation and decay. Altogether, the results imply that the adenosyl-binding site Lys221 contributes to binding and orientation of succinyl-CoA for effective catalysis.

8.
PLoS One ; 9(4): e93078, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24718052

RESUMO

5-Aminolevulinate synthase (ALAS; EC 2.3.1.37) catalyzes the first committed step of heme biosynthesis in animals. The erythroid-specific ALAS isozyme (ALAS2) is negatively regulated by heme at the level of mitochondrial import and, in its mature form, certain mutations of the murine ALAS2 active site loop result in increased production of protoporphyrin IX (PPIX), the precursor for heme. Importantly, generation of PPIX is a crucial component in the widely used photodynamic therapies (PDT) of cancer and other dysplasias. ALAS2 variants that cause high levels of PPIX accumulation provide a new means of targeted, and potentially enhanced, photosensitization. In order to assess the prospective utility of ALAS2 variants in PPIX production for PDT, K562 human erythroleukemia cells and HeLa human cervical carcinoma cells were transfected with expression plasmids for ALAS2 variants with greater enzymatic activity than the wild-type enzyme. The levels of accumulated PPIX in ALAS2-expressing cells were analyzed using flow cytometry with fluorescence detection. Further, cells expressing ALAS2 variants were subjected to white light treatments (21-22 kLux) for 10 minutes after which cell viability was determined. Transfection of HeLa cells with expression plasmids for murine ALAS2 variants, specifically for those with mutated mitochondrial presequences and a mutation in the active site loop, caused significant cellular accumulation of PPIX, particularly in the membrane. Light treatments revealed that ALAS2 expression results in an increase in cell death in comparison to aminolevulinic acid (ALA) treatment producing a similar amount of PPIX. The delivery of stable and highly active ALAS2 variants has the potential to expand and improve upon current PDT regimes.


Assuntos
5-Aminolevulinato Sintetase/metabolismo , Luz , Proteínas Mutantes/metabolismo , Protoporfirinas/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/efeitos da radiação , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Membrana Celular/efeitos da radiação , Meios de Cultura , Desferroxamina/farmacologia , Glicina/farmacologia , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Humanos , Células K562 , Camundongos , Paclitaxel/farmacologia , Plasmídeos/metabolismo , Transfecção
9.
J Porphyr Phthalocyanines ; 15(5-6): 350-356, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21852895

RESUMO

Ferrochelatase (also known as PPIX ferrochelatase; Enzyme Commission number 4.9.9.1.1) catalyzes the insertion of ferrous iron into PPIX to form heme. This reaction unites the biochemically synchronized pathways of porphyrin synthesis and iron transport in nearly all living organisms. The ferrochelatases are an evolutionarily diverse family of enzymes with no more than six active site residues known to be perfectly conserved. The availability of over thirty different crystal structures, including many with bound metal ions or porphyrins, has added tremendously to our understanding of ferrochelatase structure and function. It is generally believed that ferrous iron is directly channeled to ferrochelatase in vivo, but the identity of the suspected chaperone remains uncertain despite much recent progress in this area. Identification of a conserved metal ion binding site at the base of the active site cleft may be an important clue as to how ferrochelatases acquire iron, and catalyze desolvation during transport to the catalytic site to complete heme synthesis.

10.
Arch Biochem Biophys ; 511(1-2): 107-17, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21600186

RESUMO

5-Aminolevulinate synthase (ALAS) and 8-amino-7-oxononanoate synthase (AONS) are homodimeric members of the α-oxoamine synthase family of pyridoxal 5'-phosphate (PLP)-dependent enzymes. Previously, linking two ALAS subunits into a single polypeptide chain dimer yielded an enzyme (ALAS/ALAS) with a significantly greater turnover number than that of wild-type ALAS. To examine the contribution of each active site to the enzymatic activity of ALAS/ALAS, the catalytic lysine, which also covalently binds the PLP cofactor, was substituted with alanine in one of the active sites. Albeit the chemical rate for the pre-steady-state burst of ALA formation was identical in both active sites of ALAS/ALAS, the k(cat) values of the variants differed significantly (4.4±0.2 vs. 21.6±0.7 min(-1)) depending on which of the two active sites harbored the mutation. We propose that the functional asymmetry for the active sites of ALAS/ALAS stems from linking the enzyme subunits and the introduced intermolecular strain alters the protein conformational flexibility and rates of product release. Moreover, active site functional asymmetry extends to chimeric ALAS/AONS proteins, which while having a different oligomeric state, exhibit different rates of product release from the two ALAS and two AONS active sites due to the created intermolecular strain.


Assuntos
5-Aminolevulinato Sintetase/química , Aciltransferases/química , 5-Aminolevulinato Sintetase/genética , 5-Aminolevulinato Sintetase/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo , Substituição de Aminoácidos , Animais , Domínio Catalítico/genética , Dimerização , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Cinética , Camundongos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Espectrometria de Fluorescência , Espectrofotometria
11.
Biochemistry ; 50(9): 1535-44, 2011 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-21222436

RESUMO

The heme biosynthetic pathway culminates with the ferrochelatase-catalyzed ferrous iron chelation into protoporphyrin IX to form protoheme. The catalytic mechanism of ferrochelatase has been proposed to involve the stabilization of a nonplanar porphyrin to present the pyrrole nitrogens to the metal ion substrate. Previously, we hypothesized that the ferrochelatase-induced nonplanar distortions of the porphyrin substrate impose selectivity for the divalent metal ion incorporated into the porphyrin ring and facilitate the release of the metalated porphyrin through its reduced affinity for the enzyme. Using resonance Raman spectroscopy, the structural properties of porphyrins bound to the active site of directly evolved Ni(2+)-chelatase variants are now examined with regard to the mode and extent of porphyrin deformation and related to the catalytic properties of the enzymes. The Ni(2+)-chelatase variants (S143T, F323L, and S143T/F323L), which were directly evolved to exhibit an enhanced Ni(2+)-chelatase activity over that of the parent wild-type ferrochelatase, induced a weaker saddling deformation of the porphyrin substrate. Steady-state kinetic parameters of the evolved variants for Ni(2+)- and Fe(2+)-chelatase activities increased compared to those of wild-type ferrochelatase. In particular, the reduced porphyrin saddling deformation correlated with increased catalytic efficiency toward the metal ion substrate (Ni(2+) or Fe(2+)). The results lead us to propose that the decrease in the induced protoporphyrin IX saddling mode is associated with a less stringent metal ion preference by ferrochelatase and a slower porphyrin chelation step.


Assuntos
Evolução Molecular Direcionada , Ferroquelatase/metabolismo , Protoporfirinas/química , Protoporfirinas/metabolismo , Animais , Ferroquelatase/genética , Regulação Enzimológica da Expressão Gênica , Cinética , Camundongos , Modelos Moleculares , Níquel/metabolismo , Ligação Proteica , Conformação Proteica
12.
Hum Mol Genet ; 15(3): 467-79, 2006 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-16371422

RESUMO

Friedreich ataxia is a severe autosomal-recessive disease characterized by neurodegeneration, cardiomyopathy and diabetes, resulting from reduced synthesis of the mitochondrial protein frataxin. Although frataxin is ubiquitously expressed, frataxin deficiency leads to a selective loss of dorsal root ganglia neurons, cardiomyocytes and pancreatic beta cells. How frataxin normally promotes survival of these particular cells is the subject of intense debate. The predominant view is that frataxin sustains mitochondrial energy production and other cellular functions by providing iron for heme synthesis and iron-sulfur cluster (ISC) assembly and repair. We have proposed that frataxin not only promotes the biogenesis of iron-containing enzymes, but also detoxifies surplus iron thereby affording a critical anti-oxidant mechanism. These two functions have been difficult to tease apart, however, and the physiologic role of iron detoxification by frataxin has not yet been demonstrated in vivo. Here, we describe mutations that specifically impair the ferroxidation or mineralization activity of yeast frataxin, which are necessary for iron detoxification but do not affect the iron chaperone function of the protein. These mutations increase the sensitivity of yeast cells to oxidative stress, shortening chronological life span and precluding survival in the absence of the anti-oxidant enzyme superoxide dismutase. Thus, the role of frataxin is not limited to promoting ISC assembly or heme synthesis. Iron detoxification is another function of frataxin relevant to anti-oxidant defense and cell longevity that could play a critical role in the metabolically demanding environment of non-dividing neuronal, cardiac and pancreatic beta cells.


Assuntos
Proteínas de Ligação ao Ferro/metabolismo , Ferro/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Aminoácidos/metabolismo , Ceruloplasmina/metabolismo , Inativação Metabólica , Minerais/metabolismo , Chaperonas Moleculares/metabolismo , Mutagênese Sítio-Dirigida , Mutação/genética , Superóxido Dismutase/metabolismo , Frataxina
13.
Protein Sci ; 14(5): 1190-200, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15840827

RESUMO

The two active sites of dimeric 5-aminolevulinate synthase (ALAS), a pyridoxal 5'-phosphate (PLP)-dependent enzyme, are located on the subunit interface with contribution of essential amino acids from each subunit. Linking the two subunits into a single polypeptide chain dimer (2XALAS) yielded an enzyme with an approximate sevenfold greater turnover number than that of wild-type ALAS. Spectroscopic and kinetic properties of 2XALAS were investigated to explore the differences in the coenzyme structure and kinetic mechanism relative to those of wild-type ALAS that confer a more active enzyme. The absorption spectra of both ALAS and 2XALAS had maxima at 410 and 330 nm, with a greater A(410)/A(330) ratio at pH approximately 7.5 for 2XALAS. The 330 nm absorption band showed an intense fluorescence at 385 nm but not at 510 nm, indicating that the 330 nm absorption species is the substituted aldamine rather than the enolimine form of the Schiff base. The 385 nm emission intensity increased with increasing pH with a single pK of approximately 8.5 for both enzymes, and thus the 410 and 330 nm absorption species were attributed to the ketoenamine and substituted aldamine, respectively. Transient kinetic analysis of the formation and decay of the quinonoid intermediate EQ(2) indicated that, although their rates were similar in ALAS and 2XALAS, accumulation of this intermediate was greater in the 2XALAS-catalyzed reaction. Collectively, these results suggest that ketoenamine is the active form of the coenzyme and forms a more prominent coenzyme structure in 2XALAS than in ALAS at pH approximately 7.5.


Assuntos
5-Aminolevulinato Sintetase/metabolismo , 5-Aminolevulinato Sintetase/química , Dicroísmo Circular , Concentração de Íons de Hidrogênio , Cinética , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
14.
Arch Biochem Biophys ; 437(2): 128-37, 2005 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-15850552

RESUMO

5-aminolevulinic acid (ALA) is the committed biological precursor to porphyrins. At supraphysiological concentrations ALA can dimerize to form 3,6-dihydropyrazine-2,5-dipropanoic acid (DHPY), which transfers electrons to XTT in a reaction that does not require metal ions and is specifically inhibited by superoxide dismutase. The formation of DHPY from ALA follows dimerization kinetics with a pK of 7.8+/-0.1. At pH 11.2, DHPY is relatively stable, but when the pH is dropped to 6.0 rapid conversion to 2,5-(beta-carboxyethyl)pyrazine occurs via an intermediate with an absorption maximum of 370 nm. Formation of this intermediate is pH-dependent with a pK of 6.0+/-0.1. These data indicate that ALA dimerizes to produce superoxide from a protonated form of DHPY. The significance of these results with respect to the concentrations of ALA used in photodynamic therapy, and the increased incidence of liver cancer in acute intermittent porphyria, is discussed.


Assuntos
Ácido Aminolevulínico/química , Prótons , Pirazinas/química , Soluções/química , Superóxidos/química , Dimerização , Concentração de Íons de Hidrogênio , Cinética , Estrutura Molecular , Análise Espectral , Fatores de Tempo
15.
Biochemistry ; 44(2): 537-45, 2005 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-15641778

RESUMO

Mitochondrial function depends on a continuous supply of iron to the iron-sulfur cluster (ISC) and heme biosynthetic pathways as well as on the ability to prevent iron-catalyzed oxidative damage. The mitochondrial protein frataxin plays a key role in these processes by a novel mechanism that remains to be fully elucidated. Recombinant yeast and human frataxin are able to self-associate in large molecular assemblies that bind and store iron as a ferrihydrite mineral. Moreover, either single monomers or polymers of human frataxin have been shown to serve as donors of Fe(II) to ISC scaffold proteins, oxidatively inactivated [3Fe-4S](+) aconitase, and ferrochelatase. These results suggest that frataxin can use different molecular forms to accomplish its functions. Here, stable monomeric and assembled forms of human frataxin purified from Escherichia coli have provided a tool for testing this hypothesis at the biochemical level. We show that human frataxin can enhance the availability of Fe(II) in monomeric or assembled form. However, the monomer is unable to prevent iron-catalyzed radical reactions and the formation of insoluble ferric iron oxides. In contrast, the assembled protein has ferroxidase activity and detoxifies redox-active iron by sequestering it in a protein-protected compartment.


Assuntos
Proteínas de Ligação ao Ferro/química , Proteínas de Ligação ao Ferro/metabolismo , Ferro/metabolismo , Ferro/toxicidade , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Processamento de Proteína Pós-Traducional , Disponibilidade Biológica , Ceruloplasmina/química , Ceruloplasmina/metabolismo , Dano ao DNA , Compostos Férricos/química , Compostos Férricos/metabolismo , Compostos Ferrosos/química , Compostos Ferrosos/metabolismo , Humanos , Inativação Metabólica , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Oxirredução , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Soluções , Frataxina
16.
J Biol Chem ; 278(30): 27945-55, 2003 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-12736261

RESUMO

The first and regulatory step of heme biosynthesis in mammals begins with the pyridoxal 5'-phosphate-dependent condensation reaction catalyzed by 5-aminolevulinate synthase. The enzyme functions as a homodimer with the two active sites at the dimer interface. Previous studies demonstrated that circular permutation of 5-aminolevulinate synthase does not prevent folding of the polypeptide chain into a structure amenable to binding of the pyridoxal 5'-phosphate cofactor and assembly of the two subunits into a functional enzyme. However, while maintaining a wild type-like three-dimensional structure, active, circularly permuted 5-aminolevulinate synthase variants possess different topologies. To assess whether the aminolevulinate synthase overall structure can be reached through alternative or multiple folding pathways, we investigated the guanidine hydrochloride-induced unfolding, conformational stability, and structure of active, circularly permuted variants in relation to those of the wild type enzyme using fluorescence, circular dichroism, activity, and size exclusion chromatography. Aminolevulinate synthase and circularly permuted variants folded reversibly; the equilibrium unfolding/refolding profiles were biphasic and, in all but one case, protein concentration-independent, indicating a unimolecular process with the presence of at least one stable intermediate. The formation of this intermediate was preceded by the disruption of the dimeric interface or dissociation of the dimer without significant change in the secondary structural content of the subunits. In contrast to the similar stabilities associated with the dimeric interface, the energy for the unfolding of the intermediate as well as the overall conformational stabilities varied among aminolevulinate synthase and variants. The unfolding of one functional permuted variant was protein concentration-dependent and had a potentially different folding mechanism. We propose that the order of the ALAS secondary structure elements does not determine the ability of the polypeptide chain to fold but does affect its folding mechanism.


Assuntos
5-Aminolevulinato Sintetase/química , Acrilamida/farmacologia , Sítios de Ligação , Cromatografia em Gel , Dicroísmo Circular , Dimerização , Relação Dose-Resposta a Droga , Guanidina/farmacologia , Iodo/farmacologia , Modelos Moleculares , Peptídeos/química , Plasmídeos/metabolismo , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína , Espectrometria de Fluorescência , Termodinâmica
17.
J Biol Chem ; 278(33): 31340-51, 2003 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12732649

RESUMO

We have investigated the mechanism of frataxin, a conserved mitochondrial protein involved in iron metabolism and neurodegenerative disease. Previous studies revealed that the yeast frataxin homologue (mYfh1p) is activated by Fe(II) in the presence of O2 and assembles stepwise into a 48-subunit multimer (alpha48) that sequesters >2000 atoms of iron in 2-4-nm cores structurally similar to ferritin iron cores. Here we show that mYfh1p assembly is driven by two sequential iron oxidation reactions: A ferroxidase reaction catalyzed by mYfh1p induces the first assembly step (alpha --> alpha3), followed by a slower autoxidation reaction that promotes the assembly of higher order oligomers yielding alpha48. Depending on the ionic environment, stepwise assembly is associated with accumulation of 50-75 Fe(II)/subunit. Initially, this Fe(II) is loosely bound to mYfh1p and can be readily mobilized by chelators or made available to the mitochondrial enzyme ferrochelatase to synthesize heme. Transfer of mYfh1p-bound Fe(II) to ferrochelatase occurs in the presence of citrate, a physiologic ferrous iron chelator, suggesting that the transfer involves an intermolecular interaction. If mYfh1p-bound Fe(II) is not transferred to a ligand, iron oxidation, and mineralization proceed to completion, Fe(III) becomes progressively less accessible, and a stable iron-protein complex is formed. Iron oxidation-driven stepwise assembly is a novel mechanism by which yeast frataxin can function as an iron chaperone or an iron store.


Assuntos
Proteínas de Ligação ao Ferro/metabolismo , Ferro/metabolismo , Chaperonas Moleculares/metabolismo , Catálise , Cromatografia em Gel , Ácido Cítrico/farmacologia , Cobre/metabolismo , Ferroquelatase/metabolismo , Oxirredução , Ligação Proteica/efeitos dos fármacos , Saccharomyces cerevisiae , Sais/farmacologia , Frataxina
18.
Blood ; 101(1): 348-50, 2003 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-12393745

RESUMO

The erythroid-specific isoform of 5-aminolevulinate synthase (ALAS2) catalyzes the rate-limiting step in heme biosynthesis. The hypoxia-inducible factor-1 (HIF-1) transcriptionally up-regulates erythropoietin, transferrin, and transferrin receptor, leading to increased erythropoiesis and hematopoietic iron supply. To test the hypothesis that ALAS2 expression might be regulated by a similar mechanism, we exposed murine erythroleukemia cells to hypoxia (1% O(2)) and found an up to 3-fold up-regulation of ALAS2 mRNA levels and an increase in cellular heme content. A fragment of the ALAS2 promoter ranging from -716 to +1 conveyed hypoxia responsiveness to a heterologous luciferase reporter gene construct in transiently transfected HeLa cells. In contrast, iron depletion, known to induce HIF-1 activity but inhibit ALAS2 translation, did not increase ALAS2 promoter activity. Mutation of a previously predicted HIF-1-binding site (-323/-318) within this promoter fragment and DNA-binding assays revealed that hypoxic up-regulation is independent of this putative HIF-1 DNA-binding site.


Assuntos
5-Aminolevulinato Sintetase/genética , Eritrócitos/enzimologia , Hipóxia/enzimologia , Fatores de Transcrição , Regulação para Cima , Animais , Proteínas de Ligação a DNA , Células HeLa , Heme/metabolismo , Humanos , Fator 1 Induzível por Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia , Ferro/farmacologia , Camundongos , Proteínas Nucleares , Regiões Promotoras Genéticas , RNA Mensageiro/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA