Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Cardiovasc Res ; 114(5): 656-667, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29401264

RESUMO

Aims: The heart is constantly challenged with acute bouts of stretching or overload. Systolic adaptations to these challenges are known but adaptations in diastolic stiffness remain unknown. We evaluated adaptations in myocardial stiffness due to acute stretching and characterized the underlying mechanisms. Methods and results: Left ventricles (LVs) of intact rat hearts, rabbit papillary muscles and myocardial strips from cardiac surgery patients were stretched. After stretching, there was a sustained >40% decrease in end-diastolic pressure (EDP) or passive tension (PT) for 15 min in all species and experimental preparations. Stretching by volume loading in volunteers and cardiac surgery patients resulted in E/E' and EDP decreases, respectively, after sustained stretching. Stretched samples had increased myocardial cGMP levels, increased phosphorylated vasodilator-stimulated phosphoprotein phosphorylation, as well as, increased titin phosphorylation, which was reduced by prior protein kinase G (PKG) inhibition (PKGi). Skinned cardiomyocytes from stretched and non-stretched myocardia were studied. Skinned cardiomyocytes from stretched hearts showed decreased PT, which was abrogated by protein phosphatase incubation; whereas those from non-stretched hearts decreased PT after PKG incubation. Pharmacological studies assessed the role of nitric oxide (NO) and natriuretic peptides (NPs). PT decay after stretching was significantly reduced by combined NP antagonism, NO synthase inhibition and NO scavenging, or by PKGi. Response to stretching was remarkably reduced in a rat model of LV hypertrophy, which also failed to increase titin phosphorylation. Conclusions: We describe and translate to human physiology a novel adaptive mechanism, partly mediated by titin phosphorylation through cGMP-PKG signalling, whereby myocardial compliance increases in response to acute stretching. This mechanism may not function in the hypertrophic heart.


Assuntos
Hipertrofia Ventricular Esquerda/metabolismo , Mecanorreceptores/metabolismo , Contração Miocárdica , Miócitos Cardíacos/metabolismo , Músculos Papilares/metabolismo , Função Ventricular Esquerda , Adaptação Fisiológica , Animais , Estudos de Casos e Controles , Moléculas de Adesão Celular/metabolismo , Complacência (Medida de Distensibilidade) , Conectina/metabolismo , GMP Cíclico/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Modelos Animais de Doenças , Humanos , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Preparação de Coração Isolado , Masculino , Mecanotransdução Celular , Proteínas dos Microfilamentos/metabolismo , Miócitos Cardíacos/patologia , Músculos Papilares/fisiopatologia , Fosfoproteínas/metabolismo , Fosforilação , Coelhos , Ratos Wistar , Sistemas do Segundo Mensageiro , Pressão Ventricular
2.
EBioMedicine ; 16: 224-237, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28163043

RESUMO

p53 is an important modulator of stem cell fate, but its role in cardiac progenitor cells (CPCs) is unknown. Here, we tested the effects of a single extra-copy of p53 on the function of CPCs in the presence of oxidative stress mediated by doxorubicin in vitro and type-1 diabetes in vivo. CPCs were obtained from super-p53 transgenic mice (p53-tg), in which the additional allele is regulated in a manner similar to the endogenous protein. Old CPCs with increased p53 dosage showed a superior ability to sustain oxidative stress, repair DNA damage and restore cell division. With doxorubicin, a larger fraction of CPCs carrying an extra-copy of the p53 allele recruited γH2A.X reestablishing DNA integrity. Enhanced p53 expression resulted in a superior tolerance to oxidative stress in vivo by providing CPCs with defense mechanisms necessary to survive in the milieu of the diabetic heart; they engrafted in regions of tissue injury and in three days acquired the cardiomyocyte phenotype. The biological advantage provided by the increased dosage of p53 in CPCs suggests that this genetic strategy may be translated to humans to increase cellular engraftment and growth, critical determinants of successful cell therapy for the failing heart.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Células-Tronco/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Western Blotting , Diferenciação Celular/genética , Proliferação de Células/genética , Células Cultivadas , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Feminino , Expressão Gênica , Coração/fisiopatologia , Histonas/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Fluorescência , Miócitos Cardíacos/citologia , Miócitos Cardíacos/transplante , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transplante de Células-Tronco/métodos , Células-Tronco/citologia , Proteína Supressora de Tumor p53/genética
3.
Int J Cardiol ; 228: 465-480, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27870978

RESUMO

Today there is an increasing demand for heart transplantations for patients diagnosed with heart failure. Though, shortage of donors as well as the large number of ineligible patients hurdle such treatment option. This, in addition to the considerable number of transplant rejections, has driven the clinical research towards the field of regenerative medicine. Nonetheless, to date, several stem cell therapies tested in animal models fall by the wayside and when they meet the criteria to clinical trials, subjects often exhibit modest improvements. A main issue slowing down the admission of such therapies in the domain of human trials is the lack of protocol standardization between research groups, which hampers comparison between different approaches as well as the lack of thought regarding the clinical translation. In this sense, given the large amount of reports on stem cell therapy studies in animal models reported in the last 3years, we sought to evaluate their advantages and limitations towards the clinical setting and provide some suggestions for the forthcoming investigations. We expect, with this review, to start a new paradigm on regenerative medicine, by evoking the debate on how to plan novel stem cell therapy studies with animal models in order to achieve more consistent scientific production and accelerate the admission of stem cell therapies in the clinical setting.


Assuntos
Terapia Genética/normas , Isquemia Miocárdica/terapia , Medicina Regenerativa/normas , Transplante de Células-Tronco/normas , Animais , Modelos Animais de Doenças , Humanos
4.
Circ Res ; 111(7): 894-906, 2012 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-22851539

RESUMO

RATIONALE: According to the immortal DNA strand hypothesis, dividing stem cells selectively segregate chromosomes carrying the old template DNA, opposing accumulation of mutations resulting from nonrepaired replication errors and attenuating telomere shortening. OBJECTIVE: Based on the premise of the immortal DNA strand hypothesis, we propose that stem cells retaining the old DNA would represent the most powerful cells for myocardial regeneration. METHODS AND RESULTS: Division of human cardiac stem cells (hCSCs) by nonrandom and random segregation of chromatids was documented by clonal assay of bromodeoxyuridine-tagged hCSCs. Additionally, their growth properties were determined by a series of in vitro and in vivo studies. We report that a small class of hCSCs retain during replication the mother DNA and generate 2 daughter cells, which carry the old and new DNA, respectively. hCSCs with immortal DNA form a pool of nonsenescent cells with longer telomeres and higher proliferative capacity. The self-renewal and long-term repopulating ability of these cells was shown in serial-transplantation assays in the infarcted heart; these cells created a chimeric organ, composed of spared rat and regenerated human cardiomyocytes and coronary vessels, leading to a remarkable restoration of cardiac structure and function. The documentation that hCSCs divide by asymmetrical and symmetrical chromatid segregation supports the view that the human heart is a self-renewing organ regulated by a compartment of resident hCSCs. CONCLUSIONS: The impressive recovery in ventricular hemodynamics and anatomy mediated by clonal hCSCs carrying the "mother" DNA underscores the clinical relevance of this stem cell class for the management of heart failure in humans.


Assuntos
Cromátides/fisiologia , Segregação de Cromossomos/fisiologia , Coração/fisiologia , Infarto do Miocárdio/terapia , Miocárdio/citologia , Regeneração/fisiologia , Transplante de Células-Tronco , Células-Tronco/citologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Bromodesoxiuridina , Proliferação de Células , Células Cultivadas , Criança , Pré-Escolar , Cromátides/ultraestrutura , DNA/fisiologia , Feminino , Humanos , Técnicas In Vitro , Lactente , Masculino , Pessoa de Meia-Idade , Modelos Animais , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Ratos , Ratos Endogâmicos F344 , Células-Tronco/fisiologia , Telômero/ultraestrutura , Adulto Jovem
5.
Circ Res ; 110(5): 701-15, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22275487

RESUMO

RATIONALE: Embryonic and fetal myocardial growth is characterized by a dramatic increase in myocyte number, but whether the expansion of the myocyte compartment is dictated by activation and commitment of resident cardiac stem cells (CSCs), division of immature myocytes or both is currently unknown. OBJECTIVE: In this study, we tested whether prenatal cardiac development is controlled by activation and differentiation of CSCs and whether division of c-kit-positive CSCs in the mouse heart is triggered by spontaneous Ca(2+) oscillations. METHODS AND RESULTS: We report that embryonic-fetal c-kit-positive CSCs are self-renewing, clonogenic and multipotent in vitro and in vivo. The growth and commitment of c-kit-positive CSCs is responsible for the generation of the myocyte progeny of the developing heart. The close correspondence between values computed by mathematical modeling and direct measurements of myocyte number at E9, E14, E19 and 1 day after birth strongly suggests that the organogenesis of the embryonic heart is dependent on a hierarchical model of cell differentiation regulated by resident CSCs. The growth promoting effects of c-kit-positive CSCs are triggered by spontaneous oscillations in intracellular Ca(2+), mediated by IP3 receptor activation, which condition asymmetrical stem cell division and myocyte lineage specification. CONCLUSIONS: Myocyte formation derived from CSC differentiation is the major determinant of cardiac growth during development. Division of c-kit-positive CSCs in the mouse is promoted by spontaneous Ca(2+) spikes, which dictate the pattern of stem cell replication and the generation of a myocyte progeny at all phases of prenatal life and up to one day after birth.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Coração/embriologia , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Animais , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Células Cultivadas , Técnicas de Cultura Embrionária , Receptores de Inositol 1,4,5-Trifosfato/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Animais , Modelos Teóricos , Organogênese/fisiologia , Proteínas Proto-Oncogênicas c-kit/genética
6.
N Engl J Med ; 364(19): 1795-806, 2011 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-21561345

RESUMO

BACKGROUND: Although progenitor cells have been described in distinct anatomical regions of the lung, description of resident stem cells has remained elusive. METHODS: Surgical lung-tissue specimens were studied in situ to identify and characterize human lung stem cells. We defined their phenotype and functional properties in vitro and in vivo. RESULTS: Human lungs contain undifferentiated human lung stem cells nested in niches in the distal airways. These cells are self-renewing, clonogenic, and multipotent in vitro. After injection into damaged mouse lung in vivo, human lung stem cells form human bronchioles, alveoli, and pulmonary vessels integrated structurally and functionally with the damaged organ. The formation of a chimeric lung was confirmed by detection of human transcripts for epithelial and vascular genes. In addition, the self-renewal and long-term proliferation of human lung stem cells was shown in serial-transplantation assays. CONCLUSIONS: Human lungs contain identifiable stem cells. In animal models, these cells participate in tissue homeostasis and regeneration. They have the undemonstrated potential to promote tissue restoration in patients with lung disease. (Funded by the National Institutes of Health.).


Assuntos
Pulmão/citologia , Células-Tronco/fisiologia , Adulto , Animais , Células Clonais , Feminino , Humanos , Pulmão/embriologia , Pulmão/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Pluripotentes , Proteínas Proto-Oncogênicas c-kit/análise , Regeneração , Transplante de Células-Tronco , Células-Tronco/química
7.
Circ Res ; 108(12): 1467-81, 2011 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-21546606

RESUMO

RATIONALE: Age and coronary artery disease may negatively affect the function of human cardiac stem cells (hCSCs) and their potential therapeutic efficacy for autologous cell transplantation in the failing heart. OBJECTIVE: Insulin-like growth factor (IGF)-1, IGF-2, and angiotensin II (Ang II), as well as their receptors, IGF-1R, IGF-2R, and AT1R, were characterized in c-kit(+) hCSCs to establish whether these systems would allow us to separate hCSC classes with different growth reserve in the aging and diseased myocardium. METHODS AND RESULTS: C-kit(+) hCSCs were collected from myocardial samples obtained from 24 patients, 48 to 86 years of age, undergoing elective cardiac surgery for coronary artery disease. The expression of IGF-1R in hCSCs recognized a young cell phenotype defined by long telomeres, high telomerase activity, enhanced cell proliferation, and attenuated apoptosis. In addition to IGF-1, IGF-1R(+) hCSCs secreted IGF-2 that promoted myocyte differentiation. Conversely, the presence of IGF-2R and AT1R, in the absence of IGF-1R, identified senescent hCSCs with impaired growth reserve and increased susceptibility to apoptosis. The ability of IGF-1R(+) hCSCs to regenerate infarcted myocardium was then compared with that of unselected c-kit(+) hCSCs. IGF-1R(+) hCSCs improved cardiomyogenesis and vasculogenesis. Pretreatment of IGF-1R(+) hCSCs with IGF-2 resulted in the formation of more mature myocytes and superior recovery of ventricular structure. CONCLUSIONS: hCSCs expressing only IGF-1R synthesize both IGF-1 and IGF-2, which are potent modulators of stem cell replication, commitment to the myocyte lineage, and myocyte differentiation, which points to this hCSC subset as the ideal candidate cell for the management of human heart failure.


Assuntos
Doença da Artéria Coronariana/metabolismo , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Receptor IGF Tipo 1/metabolismo , Regeneração , Células-Tronco/metabolismo , Angiotensina II/metabolismo , Diferenciação Celular , Doença da Artéria Coronariana/patologia , Doença da Artéria Coronariana/terapia , Feminino , Humanos , Fator de Crescimento Insulin-Like I/biossíntese , Fator de Crescimento Insulin-Like II/metabolismo , Masculino , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Miocárdio/patologia , Miócitos Cardíacos/patologia , Receptor IGF Tipo 2/metabolismo , Transplante de Células-Tronco , Células-Tronco/patologia , Transplante Autólogo
8.
Circ Res ; 108(9): 1071-83, 2011 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-21415392

RESUMO

RATIONALE: Understanding the mechanisms that regulate trafficking of human cardiac stem cells (hCSCs) may lead to development of new therapeutic approaches for the failing heart. OBJECTIVE: We tested whether the motility of hCSCs in immunosuppressed infarcted animals is controlled by the guidance system that involves the interaction of Eph receptors with ephrin ligands. METHODS AND RESULTS: Within the cardiac niches, cardiomyocytes expressed preferentially the ephrin A1 ligand, whereas hCSCs possessed the EphA2 receptor. Treatment of hCSCs with ephrin A1 resulted in the rapid internalization of the ephrin A1-EphA2 complex, posttranslational modifications of Src kinases, and morphological changes consistent with the acquisition of a motile cell phenotype. Ephrin A1 enhanced the motility of hCSCs in vitro, and their migration in vivo following acute myocardial infarction. At 2 weeks after infarction, the volume of the regenerated myocardium was 2-fold larger in animals injected with ephrin A1-activated hCSCs than in animals receiving control hCSCs; this difference was dictated by a greater number of newly formed cardiomyocytes and coronary vessels. The increased recovery in myocardial mass with ephrin A1-treated hCSCs was characterized by further restoration of cardiac function and by a reduction in arrhythmic events. CONCLUSIONS: Ephrin A1 promotes the motility of EphA2-positive hCSCs, facilitates their migration to the area of damage, and enhances cardiac repair. Thus, in situ stimulation of resident hCSCs with ephrin A1 or their ex vivo activation before myocardial delivery improves cell targeting to sites of injury, possibly providing a novel strategy for the management of the diseased heart.


Assuntos
Efrina-A1/genética , Efrina-A2/genética , Células-Tronco Hematopoéticas/citologia , Infarto do Miocárdio/fisiopatologia , Miócitos Cardíacos/citologia , Animais , Adesão Celular/fisiologia , Membrana Celular/metabolismo , Movimento Celular/fisiologia , Citoplasma/metabolismo , Efrina-A1/metabolismo , Efrina-A2/metabolismo , Expressão Gênica/fisiologia , Proteínas de Fluorescência Verde/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Infarto do Miocárdio/patologia , Infarto do Miocárdio/terapia , Ratos , Ratos Endogâmicos F344 , Taquicardia Ventricular/patologia , Taquicardia Ventricular/fisiopatologia , Taquicardia Ventricular/terapia
9.
Circulation ; 123(12): 1287-96, 2011 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-21403094

RESUMO

BACKGROUND: Cardiac stem cells (CSCs) delivered to the infarcted heart generate a large number of small fetal-neonatal cardiomyocytes that fail to acquire the differentiated phenotype. However, the interaction of CSCs with postmitotic myocytes results in the formation of cells with adult characteristics. METHODS AND RESULTS: On the basis of results of in vitro and in vivo assays, we report that the commitment of human CSCs (hCSCs) to the myocyte lineage and the generation of mature working cardiomyocytes are influenced by microRNA-499 (miR-499), which is barely detectable in hCSCs but is highly expressed in postmitotic human cardiomyocytes. miR-499 traverses gap junction channels and translocates to structurally coupled hCSCs favoring their differentiation into functionally competent cells. Expression of miR-499 in hCSCs represses the miR-499 target genes Sox6 and Rod1, enhancing cardiomyogenesis in vitro and after infarction in vivo. Although cardiac repair was detected in all cell-treated infarcted hearts, the aggregate volume of the regenerated myocyte mass and myocyte cell volume were greater in animals injected with hCSCs overexpressing miR-499. Treatment with hCSCs resulted in an improvement in ventricular function, consisting of a better preservation of developed pressure and positive and negative dP/dt after infarction. An additional positive effect on cardiac performance occurred with miR-499, pointing to enhanced myocyte differentiation/hypertrophy as the mechanism by which miR-499 potentiated the restoration of myocardial mass and function in the infarcted heart. CONCLUSIONS: The recognition that miR-499 promotes the differentiation of hCSCs into mechanically integrated cardiomyocytes has important clinical implications for the treatment of human heart failure.


Assuntos
Células-Tronco Adultas/citologia , MicroRNAs/fisiologia , Infarto do Miocárdio/terapia , Miócitos Cardíacos/citologia , Transplante de Células-Tronco , Células-Tronco Adultas/fisiologia , Animais , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Junções Comunicantes/fisiologia , Expressão Gênica/fisiologia , Humanos , Infarto do Miocárdio/patologia , Miócitos Cardíacos/fisiologia , Proteína de Ligação a Regiões Ricas em Polipirimidinas , Proteínas de Ligação a RNA/genética , Ratos , Regeneração/fisiologia , Fatores de Transcrição SOXD/genética
10.
Circ Res ; 107(2): 305-15, 2010 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-20522802

RESUMO

RATIONALE: The ability of the human heart to regenerate large quantities of myocytes remains controversial, and the extent of myocyte renewal claimed by different laboratories varies from none to nearly 20% per year. OBJECTIVE: To address this issue, we examined the percentage of myocytes, endothelial cells, and fibroblasts labeled by iododeoxyuridine in postmortem samples obtained from cancer patients who received the thymidine analog for therapeutic purposes. Additionally, the potential contribution of DNA repair, polyploidy, and cell fusion to the measurement of myocyte regeneration was determined. METHODS AND RESULTS: The fraction of myocytes labeled by iododeoxyuridine ranged from 2.5% to 46%, and similar values were found in fibroblasts and endothelial cells. An average 22%, 20%, and 13% new myocytes, fibroblasts, and endothelial cells were generated per year, suggesting that the lifespan of these cells was approximately 4.5, 5, and 8 years, respectively. The newly formed cardiac cells showed a fully differentiated adult phenotype and did not express the senescence-associated protein p16(INK4a). Moreover, measurements by confocal microscopy and flow cytometry documented that the human heart is composed predominantly of myocytes with 2n diploid DNA content and that tetraploid and octaploid nuclei constitute only a small fraction of the parenchymal cell pool. Importantly, DNA repair, ploidy formation, and cell fusion were not implicated in the assessment of myocyte regeneration. CONCLUSIONS: Our findings indicate that the human heart has a significant growth reserve and replaces its myocyte and nonmyocyte compartment several times during the course of life.


Assuntos
Proliferação de Células , Células Endoteliais/patologia , Fibroblastos/patologia , Desenvolvimento Muscular , Miocárdio/patologia , Miócitos Cardíacos/patologia , Neoplasias/patologia , Adulto , Fatores Etários , Idoso , Animais , Autopsia , Morte Celular , Fusão Celular , Núcleo Celular/patologia , Proliferação de Células/efeitos dos fármacos , Reparo do DNA , Células Endoteliais/efeitos dos fármacos , Feminino , Fibroblastos/efeitos dos fármacos , Citometria de Fluxo , Humanos , Idoxuridina/uso terapêutico , Imuno-Histoquímica , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Desenvolvimento Muscular/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Fenótipo , Poliploidia , Radiossensibilizantes/uso terapêutico , Ratos , Ratos Endogâmicos F344 , Regeneração , Fatores de Tempo , Adulto Jovem
11.
Circulation ; 121(2): 276-92, 2010 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-20038740

RESUMO

BACKGROUND: Anthracyclines are the most effective drugs available in the treatment of neoplastic diseases; however, they have profound consequences on the structure and function of the heart, which over time cause a cardiomyopathy that leads to congestive heart failure. METHODS AND RESULTS: Administration of doxorubicin in rats led to a dilated myopathy, heart failure, and death. To test whether the effects of doxorubicin on cardiac anatomy and function were mediated by alterations in cardiac progenitor cells (CPCs), these cells were exposed to the anthracycline, which increased the formation of reactive oxygen species and caused increases in DNA damage, expression of p53, telomere attrition, and apoptosis. Additionally, doxorubicin resulted in cell-cycle arrest at the G2/M transition, which led to a significant decrease in CPC growth. Doxorubicin elicited multiple molecular adaptations; the massive apoptotic death that occurred in CPCs in the presence of anthracycline imposed on the surviving CPC pool the activation of several pathways aimed at preservation of the primitive state, cell division, lineage differentiation, and repair of damaged DNA. To establish whether delivery of syngeneic progenitor cells opposed the progression of doxorubicin cardiotoxicity, enhanced green fluorescent protein-labeled CPCs were injected in the failing myocardium; this treatment promoted regeneration of cardiomyocytes and vascular structures, which improved ventricular performance and rate of animal survival. CONCLUSIONS: Our results raise the possibility that autologous CPCs can be obtained before antineoplastic drugs are given to cancer patients and subsequently administered to individuals who are particularly sensitive to the cardiotoxicity of these agents for prevention or management of heart failure.


Assuntos
Antraciclinas/efeitos adversos , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/terapia , Regeneração , Transplante de Células-Tronco , Células-Tronco/efeitos dos fármacos , Animais , Cardiomiopatias/patologia , Cardiomiopatia Dilatada/induzido quimicamente , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Dilatada/terapia , Contagem de Células , Doxorrubicina/efeitos adversos , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/terapia , Humanos , Miócitos Cardíacos , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Ratos , Células-Tronco/fisiologia
12.
Circ Res ; 105(8): 764-74, 2009 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-19745162

RESUMO

RATIONALE: The adult heart possesses a pool of progenitor cells stored in myocardial niches, but the mechanisms involved in the activation of this cell compartment are currently unknown. OBJECTIVE: Ca2+ promotes cell growth raising the possibility that changes in intracellular Ca2+ initiate division of c-kit-positive human cardiac progenitor cells (hCPCs) and determine their fate. METHODS AND RESULTS: Ca2+ oscillations were identified in hCPCs and these events occurred independently from coupling with cardiomyocytes or the presence of extracellular Ca2+. These findings were confirmed in the heart of transgenic mice in which enhanced green fluorescent protein was under the control of the c-kit promoter. Ca2+ oscillations in hCPCs were regulated by the release of Ca2+ from the endoplasmic reticulum through activation of inositol 1,4,5-triphosphate receptors (IP3Rs) and the reuptake of Ca2+ by the sarco-/endoplasmic reticulum Ca2+ pump (SERCA). IP3Rs and SERCA were highly expressed in hCPCs, whereas ryanodine receptors were not detected. Although Na+-Ca2+ exchanger, store-operated Ca2+ channels and plasma membrane Ca2+ pump were present and functional in hCPCs, they had no direct effects on Ca2+ oscillations. Conversely, Ca2+ oscillations and their frequency markedly increased with ATP and histamine which activated purinoceptors and histamine-1 receptors highly expressed in hCPCs. Importantly, Ca2+ oscillations in hCPCs were coupled with the entry of cells into the cell cycle and 5-bromodeoxyuridine incorporation. Induction of Ca2+ oscillations in hCPCs before their intramyocardial delivery to infarcted hearts was associated with enhanced engraftment and expansion of these cells promoting the generation of a large myocyte progeny. CONCLUSION: IP3R-mediated Ca2+ mobilization control hCPC growth and their regenerative potential.


Assuntos
Relógios Biológicos/fisiologia , Cálcio/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Células-Tronco/metabolismo , Trifosfato de Adenosina/farmacologia , Adulto , Animais , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Histamina/farmacologia , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Camundongos , Camundongos Transgênicos , Miocárdio/citologia , Miócitos Cardíacos/citologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores Histamínicos/metabolismo , Receptores Purinérgicos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Células-Tronco/citologia
13.
Circ Res ; 103(1): 107-16, 2008 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-18556576

RESUMO

Ischemic heart disease is characterized chronically by a healed infarct, foci of myocardial scarring, cavitary dilation, and impaired ventricular performance. These alterations can only be reversed by replacement of scarred tissue with functionally competent myocardium. We tested whether cardiac progenitor cells (CPCs) implanted in proximity of healed infarcts or resident CPCs stimulated locally by hepatocyte growth factor and insulin-like growth factor-1 invade the scarred myocardium and generate myocytes and coronary vessels improving the hemodynamics of the infarcted heart. Hepatocyte growth factor is a powerful chemoattractant of CPCs, and insulin-like growth factor-1 promotes their proliferation and survival. Injection of CPCs or growth factors led to the replacement of approximately 42% of the scar with newly formed myocardium, attenuated ventricular dilation and prevented the chronic decline in function of the infarcted heart. Cardiac repair was mediated by the ability of CPCs to synthesize matrix metalloproteinases that degraded collagen proteins, forming tunnels within the fibrotic tissue during their migration across the scarred myocardium. New myocytes had a 2n karyotype and possessed 2 sex chromosomes, excluding cell fusion. Clinically, CPCs represent an ideal candidate cell for cardiac repair in patients with chronic heart failure. CPCs may be isolated from myocardial biopsies and, following their expansion in vitro, administered back to the same patients avoiding the adverse effects associated with the use of nonautologous cells. Alternatively, growth factors may be delivered locally to stimulate resident CPCs and promote myocardial regeneration. These forms of treatments could be repeated over time to reduce progressively tissue scarring and expand the working myocardium.


Assuntos
Cicatriz/terapia , Insuficiência Cardíaca/terapia , Infarto do Miocárdio/terapia , Miocárdio , Transplante de Células-Tronco , Células-Tronco , Animais , Movimento Celular/efeitos dos fármacos , Doença Crônica , Cicatriz/etiologia , Cicatriz/metabolismo , Cicatriz/patologia , Colágeno/metabolismo , Colagenases/biossíntese , Diploide , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Hemodinâmica , Fator de Crescimento de Hepatócito/metabolismo , Fator de Crescimento de Hepatócito/farmacologia , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Infarto do Miocárdio/complicações , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ratos , Regeneração/efeitos dos fármacos , Transplante de Células-Tronco/métodos , Células-Tronco/metabolismo , Células-Tronco/patologia , Transplante Homólogo , Disfunção Ventricular/etiologia , Disfunção Ventricular/metabolismo , Disfunção Ventricular/patologia , Disfunção Ventricular/terapia
14.
Arq. bras. cardiol ; 90(5): 374-380, maio 2008. ilus
Artigo em Inglês, Português | LILACS | ID: lil-482931

RESUMO

A apelina é um peptídeo recentemente descoberto e identificado como o ligando endógeno do receptor APJ. A apelina e o receptor APJ são expressos numa grande variedade de tecidos, tais como coração, cérebro, rins e pulmões, onde a sua interação pode ter importantes efeitos fisiopatológicos. Com efeito, a última década foi fértil no esclarecimento de possíveis papéis desempenhados pela apelina na fisiologia humana, nomeadamente como peptídeo regulador dos sistemas cardiovascular, hipotálamo-hipófisário, gastrointestinal e imunitário. Um possível envolvimento da apelina na patogênese de doenças com elevada prevalência e co-morbilidades, como a hipertensão arterial, a insuficiência cardíaca e o diabete melito tipo 2, perspectivam-na como um possível alvo terapêutico a explorar no futuro. Este trabalho fornece uma visão geral dos efeitos fisiológicos da apelina e apresenta o possível papel desse peptídeo na patogênese de várias doenças, associado a implicações terapêuticas que poderão vir a ser, assim, exploradas.


Apelin is a recently discovered peptide, identified as an endogenous ligand of receptor APJ. Apelin and receptor APJ are expressed in a wide variety of tissues including heart, brain, kidneys and lungs. Their interaction may have relevant pathophysiologic effects in those tissues. In fact, the last decade has been rich in illustrating the possible roles played by apelin in human physiology, namely as a regulating peptide of cardiovascular, hypothalamus-hypophysis, gastrointestinal, and immune systems. The possible involvement of apelin in the pathogenesis of high prevalence conditions and comorbidities - such as hypertension, heart failure, and Diabetes Mellitus Type 2 (T2DM) - rank it as a likely therapeutic target to be investigated in the future. The present paper is an overview of apelin physiologic effects and presents the possible role played by this peptide in the pathogenesis of a number of conditions as well as the therapeutic implications that might, therefore, be investigated.


Assuntos
Humanos , Fenômenos Fisiológicos Cardiovasculares , Doenças Cardiovasculares/fisiopatologia , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , /fisiopatologia , Insuficiência Cardíaca/fisiopatologia , Hipertensão/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA