Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-39282295

RESUMO

The progesterone receptor (PR) is a steroid-responsive nuclear receptor, expressed as two isoforms: PR-A and PR-B. The isoforms display distinct expression patterns and biological actions in reproductive target tissues and disruption of PR-A:PR-B signaling is associated with breast cancer development potentially by altering interactions with oncogenic co-regulatory protein (CoRs). However, the molecular details of isoform-specific PR-CoR interactions that influence progesterone signaling remain poorly understood. We employed structural mass spectrometry in this study to investigate the sequential binding mechanism of purified full-length PR and full-length CoRs, steroid receptor coactivator 3 (SRC3) and p300, as complexes with target DNA. Our findings reveal selective CoR NR-box binding by PR and novel interaction surfaces between PR, SRC3, and p300, which change during complex assembly. This provides a structural model for a sequential priming mechanism that activates PR. Comparisons of PR bound to progesterone agonist versus antagonist challenges the classical model of nuclear receptor activation and repression. Collectively, we offer a peptide-level perspective on the organization of the PR transcriptional complex and elucidate the mechanisms behind the interactions of these proteins, both in active and inactive conformations.

2.
Biochemistry ; 63(9): 1067-1074, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38619104

RESUMO

NANOG protein levels correlate with stem cell pluripotency. NANOG concentrations fluctuate constantly with low NANOG levels leading to spontaneous cell differentiation. Previous literature implicated Pin1, a phosphorylation-dependent prolyl isomerase, as a key player in NANOG stabilization. Here, using NMR spectroscopy, we investigate the molecular interactions of Pin1 with the NANOG unstructured N-terminal domain that contains a PEST sequence with two phosphorylation sites. Phosphorylation of NANOG PEST peptides increases affinity to Pin1. By systematically increasing the amount of cis PEST conformers, we show that the peptides bind tighter to the prolyl isomerase domain (PPIase) of Pin1. Phosphorylation and cis Pro enhancement at both PEST sites lead to a 5-10-fold increase in NANOG binding to the Pin1 WW domain and PPIase domain, respectively. The cis-populated NANOG PEST peptides can be potential inhibitors for disrupting Pin1-dependent NANOG stabilization in cancer stem cells.


Assuntos
Peptidilprolil Isomerase de Interação com NIMA , Proteína Homeobox Nanog , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/química , Peptidilprolil Isomerase de Interação com NIMA/genética , Proteína Homeobox Nanog/metabolismo , Proteína Homeobox Nanog/genética , Fosforilação , Humanos , Estabilidade Proteica , Ligação Proteica , Estereoisomerismo
3.
Mol Cell ; 81(16): 3368-3385.e9, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34375583

RESUMO

The mechanistic understanding of nascent RNAs in transcriptional control remains limited. Here, by a high sensitivity method methylation-inscribed nascent transcripts sequencing (MINT-seq), we characterized the landscapes of N6-methyladenosine (m6A) on nascent RNAs. We uncover heavy but selective m6A deposition on nascent RNAs produced by transcription regulatory elements, including promoter upstream antisense RNAs and enhancer RNAs (eRNAs), which positively correlates with their length, inclusion of m6A motif, and RNA abundances. m6A-eRNAs mark highly active enhancers, where they recruit nuclear m6A reader YTHDC1 to phase separate into liquid-like condensates, in a manner dependent on its C terminus intrinsically disordered region and arginine residues. The m6A-eRNA/YTHDC1 condensate co-mixes with and facilitates the formation of BRD4 coactivator condensate. Consequently, YTHDC1 depletion diminished BRD4 condensate and its recruitment to enhancers, resulting in inhibited enhancer and gene activation. We propose that chemical modifications of eRNAs together with reader proteins play broad roles in enhancer activation and gene transcriptional control.


Assuntos
Adenosina/análogos & derivados , Proteínas de Ciclo Celular/genética , Proteínas do Tecido Nervoso/genética , Fatores de Processamento de RNA/genética , RNA/genética , Fatores de Transcrição/genética , Adenosina/genética , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica/genética , Humanos , Metilação , Elementos Reguladores de Transcrição/genética , Ativação Transcricional/genética
4.
Nucleic Acids Res ; 48(5): 2621-2642, 2020 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-31863590

RESUMO

Transposable elements (TEs) comprise a large proportion of long non-coding RNAs (lncRNAs). Here, we employed CRISPR to delete a short interspersed nuclear element (SINE) in Malat1, a cancer-associated lncRNA, to investigate its significance in cellular physiology. We show that Malat1 with a SINE deletion forms diffuse nuclear speckles and is frequently translocated to the cytoplasm. SINE-deleted cells exhibit an activated unfolded protein response and PKR and markedly increased DNA damage and apoptosis caused by dysregulation of TDP-43 localization and formation of cytotoxic inclusions. TDP-43 binds stronger to Malat1 without the SINE and is likely 'hijacked' by cytoplasmic Malat1 to the cytoplasm, resulting in the depletion of nuclear TDP-43 and redistribution of TDP-43 binding to repetitive element transcripts and mRNAs encoding mitotic and nuclear-cytoplasmic regulators. The SINE promotes Malat1 nuclear retention by facilitating Malat1 binding to HNRNPK, a protein that drives RNA nuclear retention, potentially through direct interactions of the SINE with KHDRBS1 and TRA2A, which bind to HNRNPK. Losing these RNA-protein interactions due to the SINE deletion likely creates more available TDP-43 binding sites on Malat1 and subsequent TDP-43 aggregation. These results highlight the significance of lncRNA TEs in TDP-43 proteostasis with potential implications in both cancer and neurodegenerative diseases.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteostase/genética , RNA Longo não Codificante/genética , Elementos Nucleotídeos Curtos e Dispersos/genética , Apoptose , Linhagem Celular , Citoplasma/metabolismo , Dano ao DNA , Estresse do Retículo Endoplasmático , Ativação Enzimática , Dosagem de Genes , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Humanos , Mitose , Modelos Biológicos , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Deleção de Sequência/genética , eIF-2 Quinase
5.
Int J Mol Sci ; 19(5)2018 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-29734651

RESUMO

Neuropathological aggregates of the intrinsically disordered microtubule-associated protein Tau are hallmarks of Alzheimer’s disease, with decades of research devoted to studying the protein’s aggregation properties both in vitro and in vivo. Recent demonstrations that Tau is capable of undergoing liquid-liquid phase separation (LLPS) reveal the possibility that protein-enriched phase separated compartments could serve as initiation sites for Tau aggregation, as shown for other amyloidogenic proteins, such as the Fused in Sarcoma protein (FUS) and TAR DNA-binding protein-43 (TDP-43). Although truncation, mutation, and hyperphosphorylation have been shown to enhance Tau LLPS and aggregation, the effect of hyperacetylation on Tau aggregation remains unclear. Here, we investigate how the acetylation of Tau affects its potential to undergo phase separation and aggregation. Our data show that the hyperacetylation of Tau by p300 histone acetyltransferase (HAT) disfavors LLPS, inhibits heparin-induced aggregation, and impedes access to LLPS-initiated microtubule assembly. We propose that Tau acetylation prevents the toxic effects of LLPS-dependent aggregation but, nevertheless, contributes to Tau loss-of-function pathology by inhibiting Tau LLPS-mediated microtubule assembly.


Assuntos
Doença de Alzheimer/metabolismo , Agregação Patológica de Proteínas/metabolismo , Fatores de Transcrição de p300-CBP/metabolismo , Proteínas tau/metabolismo , Acetilação , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Heparina/química , Humanos , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Extração Líquido-Líquido , Microtúbulos/genética , Microtúbulos/metabolismo , Fosforilação , Agregação Patológica de Proteínas/genética , Fatores de Transcrição de p300-CBP/genética , Proteínas tau/química , Proteínas tau/genética
6.
Proc Natl Acad Sci U S A ; 113(13): E1853-62, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26976603

RESUMO

An important component of the activity of p53 as a tumor suppressor is its interaction with the transcriptional coactivators cyclic-AMP response element-binding protein (CREB)-binding protein (CBP) and p300, which activate transcription of p53-regulated stress response genes and stabilize p53 against ubiquitin-mediated degradation. The highest affinity interactions are between the intrinsically disordered N-terminal transactivation domain (TAD) of p53 and the TAZ1 and TAZ2 domains of CBP/p300. The NMR spectra of simple binary complexes of the TAZ1 and TAZ2 domains with the p53TAD suffer from exchange broadening, but innovations in construct design and isotopic labeling have enabled us to obtain high-resolution structures using fusion proteins, uniformly labeled in the case of the TAZ2-p53TAD fusion and segmentally labeled through transintein splicing for the TAZ1-p53TAD fusion. The p53TAD is bipartite, with two interaction motifs, termed AD1 and AD2, which fold to form short amphipathic helices upon binding to TAZ1 and TAZ2 whereas intervening regions of the p53TAD remain flexible. Both the AD1 and AD2 motifs bind to hydrophobic surfaces of the TAZ domains, with AD2 making more extensive hydrophobic contacts consistent with its greater contribution to the binding affinity. Binding of AD1 and AD2 is synergistic, and structural studies performed with isolated motifs can be misleading. The present structures of the full-length p53TAD complexes demonstrate the versatility of the interactions available to an intrinsically disordered domain containing bipartite interaction motifs and provide valuable insights into the structural basis of the affinity changes that occur upon stress-related posttranslational modification.


Assuntos
Proteína de Ligação a CREB/química , Proteína de Ligação a CREB/metabolismo , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo , Animais , Sítios de Ligação , Proteína de Ligação a CREB/genética , Humanos , Camundongos , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína , Eletricidade Estática , Proteína Supressora de Tumor p53/genética , Dedos de Zinco
7.
Nature ; 498(7454): 390-4, 2013 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-23783631

RESUMO

Allostery is an intrinsic property of many globular proteins and enzymes that is indispensable for cellular regulatory and feedback mechanisms. Recent theoretical and empirical observations indicate that allostery is also manifest in intrinsically disordered proteins, which account for a substantial proportion of the proteome. Many intrinsically disordered proteins are promiscuous binders that interact with multiple partners and frequently function as molecular hubs in protein interaction networks. The adenovirus early region 1A (E1A) oncoprotein is a prime example of a molecular hub intrinsically disordered protein. E1A can induce marked epigenetic reprogramming of the cell within hours after infection, through interactions with a diverse set of partners that include key host regulators such as the general transcriptional coactivator CREB binding protein (CBP), its paralogue p300, and the retinoblastoma protein (pRb; also called RB1). Little is known about the allosteric effects at play in E1A-CBP-pRb interactions, or more generally in hub intrinsically disordered protein interaction networks. Here we used single-molecule fluorescence resonance energy transfer (smFRET) to study coupled binding and folding processes in the ternary E1A system. The low concentrations used in these high-sensitivity experiments proved to be essential for these studies, which are challenging owing to a combination of E1A aggregation propensity and high-affinity binding interactions. Our data revealed that E1A-CBP-pRb interactions have either positive or negative cooperativity, depending on the available E1A interaction sites. This striking cooperativity switch enables fine-tuning of the thermodynamic accessibility of the ternary versus binary E1A complexes, and may permit a context-specific tuning of associated downstream signalling outputs. Such a modulation of allosteric interactions is probably a common mechanism in molecular hub intrinsically disordered protein function.


Assuntos
Proteínas E1A de Adenovirus/química , Proteínas E1A de Adenovirus/metabolismo , Regulação Alostérica , Motivos de Aminoácidos , Animais , Anisotropia , Proteína de Ligação a CREB/química , Proteína de Ligação a CREB/metabolismo , Transferência Ressonante de Energia de Fluorescência , Humanos , Camundongos , Modelos Moleculares , Ligação Proteica , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteína do Retinoblastoma/química , Proteína do Retinoblastoma/metabolismo , Termodinâmica , Fatores de Transcrição de p300-CBP/química
8.
J Am Chem Soc ; 134(8): 3792-803, 2012 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-22280219

RESUMO

Determination of affinities and binding sites involved in protein-ligand interactions is essential for understanding molecular mechanisms in biological systems. Here we combine singular value decomposition and global analysis of NMR chemical shift perturbations caused by protein-protein interactions to determine the number and location of binding sites on the protein surface and to measure the binding affinities. Using this method we show that the isolated AD1 and AD2 binding motifs, derived from the intrinsically disordered N-terminal transactivation domain of the tumor suppressor p53, both interact with the TAZ2 domain of the transcriptional coactivator CBP at two binding sites. Simulations of titration curves and line shapes show that a primary dissociation constant as small as 1-10 nM can be accurately estimated by NMR titration methods, provided that the primary and secondary binding processes are coupled. Unexpectedly, the site of binding of AD2 on the hydrophobic surface of TAZ2 overlaps with the binding site for AD1, but AD2 binds TAZ2 more tightly. The results highlight the complexity of interactions between intrinsically disordered proteins and their targets. Furthermore, the association rate of AD2 to TAZ2 is estimated to be 1.7 × 10(10) M(-1) s(-1), approaching the diffusion-controlled limit and indicating that intrinsic disorder plus complementary electrostatics can significantly accelerate protein binding interactions.


Assuntos
Proteína de Ligação a CREB/química , Ressonância Magnética Nuclear Biomolecular , Domínios e Motivos de Interação entre Proteínas , Proteína Supressora de Tumor p53/química , Sítios de Ligação , Ligantes , Modelos Moleculares
9.
Proc Natl Acad Sci U S A ; 107(45): 19290-5, 2010 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-20962272

RESUMO

The transcriptional activity of p53 is regulated by a cascade of posttranslational modifications. Although acetylation of p53 by CREB-binding protein (CBP)/p300 is known to be indispensable for p53 activation, the role of phosphorylation, and in particular multisite phosphorylation, in activation of CBP/p300-dependent p53 transcriptional pathways remains unclear. We investigated the role of single site and multiple site phosphorylation of the p53 transactivation domain in mediating its interaction with CBP and with the ubiquitin ligase HDM2. Phosphorylation at Thr18 functions as an on/off switch to regulate binding to the N-terminal domain of HDM2. In contrast, binding to CBP is modulated by the extent of p53 phosphorylation; addition of successive phosphoryl groups enhances the affinity for the TAZ1, TAZ2, and KIX domains of CBP in an additive manner. Activation of p53-dependent transcriptional pathways requires that p53 compete with numerous cellular transcription factors for binding to limiting amounts of CBP/p300. Multisite phosphorylation represents a mechanism for a graded p53 response, with each successive phosphorylation event resulting in increasingly efficient recruitment of CBP/p300 to p53-regulated transcriptional programs, in the face of competition from cellular transcription factors. Multisite phosphorylation thus acts as a rheostat to enhance binding to CBP/p300 and provides a plausible mechanistic explanation for the gradually increasing p53 response observed following prolonged or severe genotoxic stress.


Assuntos
Proteína de Ligação a CREB/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Dano ao DNA , Proteína p300 Associada a E1A/metabolismo , Fosforilação , Ligação Proteica , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional
10.
Proc Natl Acad Sci U S A ; 106(32): 13260-5, 2009 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-19651603

RESUMO

The adenovirus early region 1A (E1A) oncoprotein mediates cell transformation by deregulating host cellular processes and activating viral gene expression by recruitment of cellular proteins that include cyclic-AMP response element binding (CREB) binding protein (CBP)/p300 and the retinoblastoma protein (pRb). While E1A is capable of independent interaction with CBP/p300 or pRb, simultaneous binding of both proteins is required for maximal biological activity. To obtain insights into the mechanism by which E1A hijacks the cellular transcription machinery by competing with essential transcription factors for binding to CBP/p300, we have determined the structure of the complex between the transcriptional adaptor zinc finger-2 (TAZ2) domain of CBP and the conserved region-1 (CR1) domain of E1A. The E1A CR1 domain is unstructured in the free state and upon binding folds into a local helical structure mediated by an extensive network of intermolecular hydrophobic contacts. By NMR titrations, we show that E1A efficiently competes with the N-terminal transactivation domain of p53 for binding to TAZ2 and that pRb interacts with E1A at 2 independent sites located in CR1 and CR2. We show that pRb and the CBP TAZ2 domain can bind simultaneously to the CR1 site of E1A to form a ternary complex and propose a structural model for the pRb:E1A:CBP complex on the basis of published x-ray data for homologous binary complexes. These observations reveal the molecular basis by which E1A inhibits p53-mediated transcriptional activation and provide a rationale for the efficiency of cellular transformation by the adenoviral E1A oncoprotein.


Assuntos
Proteínas E1A de Adenovirus/química , Proteínas E1A de Adenovirus/metabolismo , Proteínas Oncogênicas/química , Proteínas Oncogênicas/metabolismo , Sequência de Aminoácidos , Animais , Ligação Competitiva , Espectroscopia de Ressonância Magnética , Camundongos , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteína do Retinoblastoma/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Fatores de Transcrição de p300-CBP/química , Fatores de Transcrição de p300-CBP/metabolismo
11.
Proc Natl Acad Sci U S A ; 106(16): 6591-6, 2009 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-19357310

RESUMO

The tumor suppressor activity of p53 is regulated by interactions with the ubiquitin ligase HDM2 and the general transcriptional coactivators CBP and p300. Using NMR spectroscopy and isothermal titration calorimetry, we have dissected the binding interactions between the N-terminal transactivation domain (TAD) of p53, the TAZ1, TAZ2, KIX, and nuclear receptor coactivator binding domains of CBP, and the p53-binding domain of HDM2. The p53 TAD contains amphipathic binding motifs within the AD1 and AD2 regions that mediate interactions with CBP and HDM2. Binding of the p53 TAD to CBP domains is dominated by interactions with AD2, although the affinity is enhanced by additional interactions with AD1. In contrast, binding of p53 TAD to HDM2 is mediated primarily by AD1. The p53 TAD can bind simultaneously to HDM2 (through AD1) and to any one of the CBP domains (through AD2) to form a ternary complex. Phosphorylation of p53 at T18 impairs binding to HDM2 and enhances affinity for the CBP KIX domain. Multisite phosphorylation of the p53 TAD at S15, T18, and S20 leads to increased affinity for the TAZ1 and KIX domains of CBP. These observations suggest a mechanism whereby HDM2 and CBP/p300 function synergistically to regulate the p53 response. In unstressed cells, CBP/p300, HDM2 and p53 form a ternary complex that promotes polyubiquitination and degradation of p53. After cellular stress and DNA damage, p53 becomes phosphorylated at T18 and other residues in the AD1 region, releases HDM2 and binds preferentially to CBP/p300, leading to stabilization and activation of p53.


Assuntos
Proteína de Ligação a CREB/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Sequência de Aminoácidos , Animais , Proteína de Ligação a CREB/química , Cinética , Espectroscopia de Ressonância Magnética , Camundongos , Modelos Biológicos , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Proteína Supressora de Tumor p53/química
12.
J Biol Chem ; 280(21): 20483-92, 2005 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-15767257

RESUMO

Persistent infections with hepatitis C virus (HCV) are a major cause of liver disease and reflect its ability to disrupt virus-induced signaling pathways activating cellular antiviral defenses. HCV evasion of double-stranded RNA signaling through Toll-like receptor 3 is mediated by the viral protease NS3/4A, which directs proteolysis of its proline-rich adaptor protein, Toll-IL-1 receptor domain containing adaptor-inducing interferon-beta (TRIF). The TRIF cleavage site has remarkable homology with the viral NS4B/5A substrate, although an 8-residue polyproline track extends upstream from the P(6) position in lieu of the acidic residue present in viral substrates. Circular dichroism (CD) spectroscopy confirmed that a substantial fraction of TRIF exists as polyproline II helices, and inclusion of the polyproline track increased affinity of P side TRIF peptides for the HCV-BK protease. A polyproline II peptide representing an SH3 binding motif (PPPVPPRRR, Sos) bound NS3 with moderate affinity, resulting in inhibition of proteolytic activity. Chemical shift perturbations in NMR spectra indicated that Sos binds a 3(10) helix close to the protease active site. Thus, a polyproline II interaction with the 3(10) helix likely facilitates NS3/4A recognition of TRIF, indicating a significant difference from NS3/4A recognition of viral substrates. Because SH3 binding motifs are also present in NS5A, a viral protein that interacts with NS3, we speculate that the NS3 3(10) helix may be a site of interaction with other viral proteins.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas não Estruturais Virais/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Dicroísmo Circular , Inibidores Enzimáticos , Hepacivirus/enzimologia , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Peptídeos/química , Estrutura Secundária de Proteína , Homologia de Sequência , Espectrometria de Fluorescência , Especificidade por Substrato , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/química
13.
Biochemistry ; 43(30): 9790-9, 2004 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-15274633

RESUMO

A quantitative characterization of the structure and energy of the denatured states of proteins represents the cornerstone to a molecular-level understanding of both protein stability and fold specificity. Recent studies have revealed a significant bias in unstructured peptides toward the polyproline II (P(II)) conformation, even when no prolines are present in the sequence. This indicates that the P(II) conformation is a dominant component of the denatured states of proteins, although a quantitative description of the component enthalpy and entropy functions associated with this conformation (i.e., the thermodynamic mechanism) has thus far proven elusive. An experimental system has been designed that, when analyzed with high-precision isothermal titration calorimetry, provides direct access to the residue-specific thermodynamics of the P(II) structure formation in disordered proteins and peptides. Here, it is shown that the P(II) bias is driven by a favorable and significant enthalpy (Deltah) of -1.7 kcal mol(-1) residue(-1), which is partially offset by an unfavorable entropy (TDeltas) of -0.7 kcal mol(-1) residue(-1), relative to the ensemble of disordered conformations of the molecule. In addition to impacting dramatically the interpretation of thermal denaturation experiments, these experimental values form the framework of a quantitative energetic description of the denatured states of proteins.


Assuntos
Peptídeos/química , Desnaturação Proteica , Termodinâmica , Animais , Proteínas de Caenorhabditis elegans/química , Calorimetria/métodos , Calorimetria/estatística & dados numéricos , Entropia , Modelos Químicos , Modelos Moleculares , Oligopeptídeos/química , Probabilidade , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Proteínas Son Of Sevenless/química
14.
Biochemistry ; 43(24): 7787-97, 2004 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-15196021

RESUMO

Although numerous biophysical studies have focused on elucidating the structural and thermodynamic determinants that govern the free energy of binding between various SH3 domains and their putative recognition sequences, a quantitative accounting of the energetics of this interaction has proven enigmatic. Specifically, the binding results in a large and negative change on the standard enthalpy and entropy functions, a result which is inconsistent with the positive values for these quantities that is expected from the hydrophobic nature of the binding pocket. Here, the binding of the C-terminal SH3 domain of Sem-5 to its putative recognition peptide on the Sos (Son of Sevenless) protein is investigated using isothermal titration calorimetry under a variety of temperature and pH conditions. In addition, the energy associated with folding the Sos peptide into the binding competent polyproline II conformation is quantitatively evaluated. These results provide a rationale for the observed discrepancy between the experimental and predicted behavior and indicate that the determinants of binding in this system cannot be ascertained from a static structural representation of the binding process.


Assuntos
Peptídeos/química , Domínios de Homologia de src , Sequência de Aminoácidos , Entropia , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Proteínas Son Of Sevenless/química , Termodinâmica
15.
Protein Sci ; 13(3): 626-32, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14978303

RESUMO

The Caenorhabditis elegans SEM-5 SH3 domains recognize proline-rich peptide segments with modest affinity. We developed a bivalent peptide ligand that contains a naturally occurring proline-rich binding sequence, tethered by a glycine linker to a disulfide-closed loop segment containing six variable residues. The glycine linker allows the loop segment to explore regions of greatest diversity in sequence and structure of the SH3 domain: the RT and n-Src loops. The bivalent ligand was optimized using phage display, leading to a peptide (PP-G(4)-L) with 1000-fold increased affinity for the SEM-5 C-terminal SH3 domain over that of a natural ligand. NMR analysis of the complex confirms that the peptide loop segment is targeted to the RT and n-Src loops and parts of the beta-sheet scaffold of this SH3 domain. This binding region is comparable to that targeted by a natural non-PXXP peptide to the p67(phox) SH3 domain, a region not known to be targeted in the Grb2 SH3 domain family. PP-G(4)-L may aid in the discovery of additional binding partners of Grb2 family SH3 domains.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Caenorhabditis elegans/metabolismo , Peptídeos/metabolismo , Domínios de Homologia de src/fisiologia , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Proteína Adaptadora GRB2 , Ligantes , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Biblioteca de Peptídeos , Peptídeos/síntese química , Peptídeos/química , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Termodinâmica , Domínios de Homologia de src/genética
16.
Protein Sci ; 12(5): 982-96, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12717021

RESUMO

We report the effects of peptide binding on the (15)N relaxation rates and chemical shifts of the C-SH3 of Sem-5. (15)N spin-lattice relaxation time (T(1)), spin-spin relaxation time (T(2)), and ((1)H)-(15)N NOE were obtained from heteronuclear 2D NMR experiments. These parameters were then analyzed using the Lipari-Szabo model free formalism to obtain parameters that describe the internal motions of the protein. High-order parameters (S(2) > 0.8) are found in elements of regular secondary structure, whereas some residues in the loop regions show relatively low-order parameters, notably the RT loop. Peptide binding is characterized by a significant decrease in the (15)N relaxation in the RT loop. Concomitant with the change in dynamics is a cooperative change in chemical shifts. The agreement between the binding constants calculated from chemical shift differences and that obtained from ITC indicates that the binding of Sem-5 C-SH3 to its putative peptide ligand is coupled to a cooperative conformational change in which a portion of the binding site undergoes a significant reduction in conformational heterogeneity.


Assuntos
Proteínas de Caenorhabditis elegans/química , Domínios de Homologia de src , Sítios de Ligação , Proteínas de Caenorhabditis elegans/metabolismo , Ligantes , Modelos Moleculares , Movimento (Física) , Ressonância Magnética Nuclear Biomolecular/métodos , Peptídeos/metabolismo , Ligação Proteica , Conformação Proteica
17.
Protein Sci ; 12(3): 447-57, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12592015

RESUMO

Polyproline II (PPII) is reported to be a dominant conformation in the unfolded state of peptides, even when no prolines are present in the sequence. Here we use isothermal titration calorimetry (ITC) to investigate the PPII bias in the unfolded state by studying the binding of the SH3 domain of SEM-5 to variants of its putative PPII peptide ligand, Sos. The experimental system is unique in that it provides direct access to the conformational entropy change of the substituted amino acids. Results indicate that the denatured ensemble can be characterized by at least two thermodynamically distinct states, the PPII conformation and an unfolded state conforming to the previously held idea of the denatured state as a random collection of conformations determined largely by hard-sphere collision. The probability of the PPII conformation in the denatured states for Ala and Gly were found to be significant, approximately 30% and approximately 10%, respectively, resulting in a dramatic reduction in the conformational entropy of folding.


Assuntos
Proteínas de Caenorhabditis elegans/química , Fragmentos de Peptídeos/química , Peptídeos/química , Proteínas Son Of Sevenless/química , Domínios de Homologia de src , Alanina/química , Animais , Sítios de Ligação , Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Entropia , Humanos , Espectroscopia de Ressonância Magnética , Camundongos , Modelos Moleculares , Mutação/genética , Peptídeos/metabolismo , Prolina/química , Ligação Proteica , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA