Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Toxicol ; 42(3): 232-253, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36630195

RESUMO

The NCG triple immunodeficient mice on a NOD/Nju background lack functional/mature T, B, and NK cells, and have reduced macrophage and dendritic cell function. This study characterized the NCG mouse model for toxicity, engraftment and tumorigenicity assessments of cell therapies, using CD34+ hHSPC adult mobilized cells with two myeloablation regimens.Mice received sub-lethal irradiation or busulfan and were then injected intravenously with CD34+ hHSPCs (1.0 x 106 cells/mouse) or PBS (control), while positive control animals received 2 x 106 HL-60 cells/mouse. hCD34+ cell donors were treated with the mobilizing agent G-CSF prior to leukapheresis. Following injections, mouse blood samples were collected to assess engraftment rates by flow cytometry with body weights recorded periodically up to 20 weeks post-cell injection. No significant clinical signs or body weight changes were observed. At week 10 post-cell injection, the peripheral blood chimerism of hCD45+ cells was above 20%. While mCD45+ concentration was constant between week 10 and 17 in whole blood samples, hCD45+ concentration and chimerism slightly decreased at week 17. However, chimerism remained above 10%, with busulfan-treated mice presenting higher values. Chimerism was further assessed by quantifying human Alu sequences in blood and multiple organs using qPCR. Alu sequences were most abundant in the spleen and bone marrow, while lowest in the testes. In the positive control group, expected mortalities due to tumorigenesis were observed between days 27 and 40 post-cell injection. Overall, study results may be used to inform study design and potential toxicological endpoints relevant to non-clinical cell therapy development.


Assuntos
Medula Óssea , Bussulfano , Humanos , Animais , Camundongos , Bussulfano/toxicidade , Camundongos Endogâmicos NOD , Baço
2.
J Gen Virol ; 83(Pt 4): 819-827, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11907331

RESUMO

Mml loci have been identified as provirus integration sites among a subset of monocytic tumours induced by murine leukaemia virus (MuLV) infection of BALB/c and DBA/2 mice. These myeloid leukaemias contain a retrovirus integrated on chromosome 10 in proximity to the c-myb locus; however, c-myb expression was not altered. Detailed physical mapping enabled placement of the retroviral integration sites approximately 25 kb (Mml1), approximately 51 kb (Mml2), and approximately 70 kb (Mml3) upstream of the c-myb locus. Furthermore, the Fti1 (fit-1) locus, a common integration site in feline leukaemia virus-induced T cell lymphomas, was mapped upstream of Mml3. Sequence analysis of Mml1, Mml2 and Mml3 loci (39.6, 16.4 and 5.9 kb, respectively) in conjunction with the BLAST (basic local alignment search tool) homology searches against the expressed sequence tag (EST) database and the use of gene/exon prediction programs revealed potential coding sequences that were not confirmed by Northern analysis or RT-PCR. The sequences between c-myb and Fti1, which were shown to include two potential scaffold/matrix attachment regions (S/MARs), are most likely regulatory in nature. An extended search for transcribed sequences far upstream of Mml3 revealed five genes, four of which were expressed in multiple tissues in mice. These genes could not be linked to tumour formation by the virus but their homologous sequences were found on human chromosome 6, thus allowing extension of the syntenic region on mouse chromosome 10 to approximately 250 kb.


Assuntos
Vírus da Leucemia Murina/genética , Leucemia Mieloide/virologia , Integração Viral , Sequência de Aminoácidos , Animais , Linhagem Celular , Mapeamento Cromossômico , Clonagem Molecular , Etiquetas de Sequências Expressas , Genes myb , Camundongos , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA