Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 19(8): 1705-1718, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-39052621

RESUMO

Comparative, dose-dependent analysis of interactions between small molecule drugs and their targets, as well as off-target interactions, in complex proteomes is crucial for selecting optimal drug candidates. The affinity of small molecules for targeted proteins is largely dictated by interactions between amino acid side chains and these drugs. Thus, studying drug-protein interactions at an amino acid resolution provides a comprehensive understanding of the drug selectivity and efficacy. In this study, we further refined the site-specific activity-based protein profiling strategy (ABPP), PhosID-ABPP, on a timsTOF HT mass spectrometer. This refinement enables dual dose-dependent competition of inhibitors within a single cellular proteome. Here, a comparative analysis of two activity-based probes (ABPs), developed to selectively target the epidermal growth factor receptor (EGFR), namely, PF-06672131 (PF131) and PF-6422899 (PF899), facilitated the simultaneous identification of ABP-specific binding sites at a proteome-wide scale within a cellular proteome. Dose-dependent probe-binding preferences for proteinaceous cysteines, even at low nanomolar ABP concentrations, could be revealed. Notably, in addition to the intrinsic affinity of the electrophilic probes for specific sites in targeted proteins, the observed labeling intensity is influenced by several other factors. These include the efficiency of cellular uptake, the stability of the probes, and their intracellular distribution. While both ABPs showed comparable labeling efficiency for EGFR, PF131 had a broader off-target reactivity profile. In contrast, PF899 exhibited a higher labeling efficiency for the ERBB2 receptor and bound to catalytic cysteines in several other enzymes, which is likely to disrupt their catalytic activity. Notably, PF131 effectively labeled ADP/ATP translocase proteins at a concentration of just 1 nm, and we found this affected ATP transport. Analysis of the effect of PF131 and its parent inhibitor Afatinib on murine translocase SLC25A4 (ANT1)-mediated ATP transport strongly indicated that PF131 (10 µM) partially blocked ATP transport. Afatinib was less efficient at inhibiting ATP transport by SLC25A4 than PF131, and the reduction of ATP transport by Afatinib was not significant. Follow-up analysis is required to evaluate the affinity of these inhibitors for ADP/ATP translocase SLC25A4 in more detail. Additionally, the analysis of different binding sites within the EGF receptor and the voltage-dependent anion channel 2 revealed secondary binding sites of both probes and provided insights into the binding poses of inhibitors on these proteins. Insights from the PhosID-ABPP analysis of these two ABPs serve as a valuable resource for understanding drug on- and off-target engagement in a dose- and site-specific manner.


Assuntos
Receptores ErbB , Ligação Proteica , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/química , Humanos , Sítios de Ligação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/química , Proteômica/métodos , Proteoma/metabolismo
2.
Anal Chem ; 96(19): 7386-7393, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38698660

RESUMO

Covalent labeling in combination with mass spectrometry is a powerful approach used in structural biology to study protein structures, interactions, and dynamics. Recently, the toolbox of covalent labeling techniques has been expanded with fast fluoroalkylation of proteins (FFAP). FFAP is a novel radical labeling method that utilizes fluoroalkyl radicals generated from hypervalent Togni reagents for targeting aromatic residues. This report further demonstrates the benefits of FFAP as a new method for structural characterization of therapeutic antibodies and interaction interfaces of antigen-antibody complexes. The results obtained from human trastuzumab and its complex with human epidermal growth factor receptor 2 (HER2) correlate well with previously published structural data and demonstrate the potential of FFAP in structural biology.


Assuntos
Mapeamento de Epitopos , Receptor ErbB-2 , Trastuzumab , Humanos , Mapeamento de Epitopos/métodos , Receptor ErbB-2/química , Receptor ErbB-2/imunologia , Trastuzumab/química , Alquilação , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Halogenação , Pegadas de Proteínas/métodos , Complexo Antígeno-Anticorpo/química
3.
Structure ; 29(4): 345-356.e8, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33333006

RESUMO

TEAD transcription factors regulate gene expression through interactions with DNA and other proteins. They are crucial for the development of eukaryotic organisms and to control the expression of genes involved mostly in cell proliferation and differentiation; however, their deregulation can lead to tumorigenesis. To study the interactions of TEAD1 with M-CAT motifs and their inverted versions, the KD of each complex was determined, and H/D exchange, quantitative chemical cross-linking, molecular docking, and smFRET were utilized for structural characterization. ChIP-qPCR was employed to correlate the results with a cell line model. The results obtained showed that although the inverted motif has 10× higher KD, the same residues were affected by the presence of M-CAT in both orientations. Molecular docking and smFRET revealed that TEAD1 binds the inverted motif rotated 180°. In addition, the inverted motif was proven to be occupied by TEAD1 in Jurkat cells, suggesting that the low-affinity binding sites present in the human genome may possess biological relevance.


Assuntos
Proteínas de Ligação a DNA/química , DNA/química , Proteínas Nucleares/química , Fatores de Transcrição/química , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Humanos , Células Jurkat , Simulação de Acoplamento Molecular , Proteínas Nucleares/metabolismo , Motivos de Nucleotídeos , Ligação Proteica , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA