Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmaceutics ; 16(4)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38675186

RESUMO

Melissa officinalis is an important medicinal plant that is used and studied intensively due to its numerous pharmacological effects. This plant has numerous active compounds with biomedical potential; some are volatile, while others are sensitive to heat or oxygen. Therefore, to increase stability and prolong biological activities, the natural extract can be loaded into various nanostructured systems. In this study, different loading systems were obtained from mesoporous silica, like Mobile Composition of Matter family (MCM) with a hexagonal (MCM-41) or cubic (MCM-48) pore structure, simple or functionalized with amino groups (using 3-aminopropyl) such as triethoxysilane (APTES). Thus, the four materials were characterized from morphological and structural points of view by scanning electron microscopy, a BET analysis with adsorption-desorption isotherms, Fourier-transform infrared spectroscopy (FTIR) and a thermogravimetric analysis coupled with differential scanning calorimetry. Natural extract from Melissa officinalis was concentrated and analyzed by High-Performance Liquid Chromatography to identify the polyphenolic compounds. The obtained materials were tested against Gram-negative bacteria and yeasts and against both reference strains and clinical strains belonging to Gram-positive bacteria that were previously isolated from intra-hospital infections. The highest antimicrobial efficiency was found against Gram-positive and fungal strains. Good activity was also recorded against methicillin-resistant S. aureus, the Melissa officinalis extract inhibiting the production of various virulence factors.

2.
Int J Mol Sci ; 24(20)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37895077

RESUMO

In recent years, interest in nanotechnology has increased exponentially due to enhanced progress and technological innovation. In tissue engineering, the development of metallic nanoparticles has been amplified, especially due to their antibacterial properties. Another important characteristic of metal NPs is that they enable high control over the features of the developed scaffolds (optimizing their mechanical strength and offering the controlled release of bioactive agents). Currently, the main concern related to the method of synthesis of metal oxide NPs is the environmental impact. The physical and chemical synthesis uses toxic agents that could generate hazards or exert carcinogenicity/environmental toxicity. Therefore, a greener, cleaner, and more reliable approach is needed. Green synthetic has come as a solution to counter the aforementioned limitations. Nowadays, green synthesis is preferred because it leads to the prevention/minimization of waste, the reduction of derivatives/pollution, and the use of non-toxic (safer) solvents. This method not only uses biomass sources as reducing agents for metal salts. The biomolecules also cover the synthesized NPs or act as in situ capping and reducing agents. Further, their involvement in the formation process reduces toxicity, prevents nanoparticle agglomeration, and improves the antimicrobial activity of the nanomaterial, leading to a possible synergistic effect. This study aims to provide a comprehensive review of the green synthesis of metal and metal oxide nanoparticles, from the synthesis routes, selected solvents, and parameters to their latest application in the biomedical field.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Óxidos/química , Substâncias Redutoras , Nanopartículas Metálicas/química , Antibacterianos/farmacologia , Antibacterianos/química , Metais , Extratos Vegetais/química , Solventes , Química Verde/métodos
3.
Materials (Basel) ; 16(18)2023 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-37763421

RESUMO

This review article explores the multiple applications and potential of metal-organic frameworks (MOFs) in the biomedical field. With their highly versatile and tunable properties, MOFs present many possibilities, including drug delivery, biomolecule recognition, biosensors, and immunotherapy. Their crystal structure allows precise tuning, with the ligand typology and metal geometry playing critical roles. MOFs' ability to encapsulate drugs and exhibit pH-triggered release makes them ideal candidates for precision medicine, including cancer treatment. They are also potential gene carriers for genetic disorders and have been used in biosensors and as contrast agents for magnetic resonance imaging. Despite the complexities encountered in modulating properties and interactions with biological systems, further research on MOFs is imperative. The primary focus of this review is to provide a comprehensive examination of MOFs in these applications, highlighting the current achievements and complexities encountered. Such efforts will uncover their untapped potential in creating innovative tools for biomedical applications, emphasizing the need to invest in the continued exploration of this promising field.

4.
Nanomaterials (Basel) ; 13(5)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36903753

RESUMO

Cancer remains the most devastating disease, being one of the main factors of death and morbidity worldwide since ancient times. Although early diagnosis and treatment represent the correct approach in the fight against cancer, traditional therapies, such as chemotherapy, radiotherapy, targeted therapy, and immunotherapy, have some limitations (lack of specificity, cytotoxicity, and multidrug resistance). These limitations represent a continuous challenge for determining optimal therapies for the diagnosis and treatment of cancer. Cancer diagnosis and treatment have seen significant achievements with the advent of nanotechnology and a wide range of nanoparticles. Due to their special advantages, such as low toxicity, high stability, good permeability, biocompatibility, improved retention effect, and precise targeting, nanoparticles with sizes ranging from 1 nm to 100 nm have been successfully used in cancer diagnosis and treatment by solving the limitations of conventional cancer treatment, but also overcoming multidrug resistance. Additionally, choosing the best cancer diagnosis, treatment, and management is extremely important. The use of nanotechnology and magnetic nanoparticles (MNPs) represents an effective alternative in the simultaneous diagnosis and treatment of cancer using nano-theranostic particles that facilitate early-stage detection and selective destruction of cancer cells. The specific properties, such as the control of the dimensions and the specific surface through the judicious choice of synthesis methods, and the possibility of targeting the target organ by applying an internal magnetic field, make these nanoparticles effective alternatives for the diagnosis and treatment of cancer. This review discusses the use of MNPs in cancer diagnosis and treatment and provides future perspectives in the field.

5.
Pharmaceutics ; 15(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36839982

RESUMO

Two types of mesoporous materials, MCM-41 and MCM-48, were functionalized by the soft-template method using (3-aminopropyl)triethoxysilane (APTES) as a modifying agent. The obtained mesoporous silica materials were loaded with trans-ferulic acid (FA). In order to establish the morphology and structure of mesoporous materials, a series of specific techniques were used such as: X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Brunauer-Emmet-Teller (BET), Fourier Transform Infrared Spectroscopy (FTIR) and thermogravimetric analysis (TGA). We monitored the in vitro release of the loaded FA at two different pH values, by using simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). Additionally, Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853 and Candida albicans ATCC 10231 were used to evaluate the antimicrobial activity of FA loaded mesoporous silica materials. In conclusion such functionalized mesoporous materials can be employed as controlled release systems for polyphenols extracted from natural sources.

6.
Materials (Basel) ; 15(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36431468

RESUMO

In this study, two types of mesoporous silica with different pore structures and volumes were synthesized by the soft-templating method. The two types of mesoporous silica, type MCM-41 and MCM-48, were loaded with three polyphenols-caffeic acid, p-coumaric acid and trans-ferulic acid-in the same ratio of mesoporous silica:polyphenol (1:0.4 w/w). The materials obtained were characterized from a morphological and structural point of view through different analysis techniques. Through X-ray diffraction (XRD), the crystallization plane and the ordered structure of the mesoporous silica were observed. The difference between the two types of materials containing MCM-41 and MCM-48 was observed through the different morphologies of the silica particles through scanning electron microscopy (SEM) and also through the Brunauer-Emmet-Teller (BET) analysis, that the surface areas and volumes of pores was different between the two types of mesoporous silica, and, after loading with polyphenols, the values were reduced. The characteristic bands of silica and of polyphenols were easily observed by Fourier-transform infrared spectroscopy (FTIR), and, through thermogravimetric analysis (TGA), the residual mass was determined and the estimated amount of polyphenol in the materials and the efficient loading of mesoporous silica with polyphenols could be determined. The in vitro study was performed in two types of simulated biological fluids with different pH-simulated gastric fluid (SGF) and simulated intestinal fluid (SIF). The obtained materials could be used in various biomedical applications as systems with controlled release of natural polyphenols and the most suitable application could be as food supplements especially when a mixture of such materials is used or when the polyphenols are co-loaded within the mesoporous silica.

7.
Int J Mol Sci ; 23(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36142147

RESUMO

Polyphenols represent a structural class of mainly natural organic chemicals that contain multiple phenol structural units. The beneficial properties of polyphenols have been extensively studied for their antitumor, anti-inflammatory, and antibacterial effects, but nowadays, their medical applications are starting to be extended to many other applications due to their prebiotic role and their impact on the microbiota. This review focused on the use of polyphenols in cancer treatment. Their antineoplastic effects have been demonstrated in various studies when they were tested on numerous cancer lines and some in in vivo models. A431 and SCC13 human skin cancer cell lines treated with EGCG presented a reduced cell viability and enhanced cell death due to the inactivation of ß-catenin signaling. Additionally, resveratrol showed a great potential against breast cancer mainly due to its ability to exert both anti-estrogenic and estrogenic effects (based on the concentration) and because it has a high affinity for estrogen receptors ERα and Erß. Polyphenols can be combined with different classical cytostatic agents to enhance their therapeutic effects on cancer cells and to also protect healthy cells from the aggressiveness of antitumor drugs due to their anti-inflammatory properties. For instance, curcumin has been reported to reduce the gastrointestinal toxicity associated with chemotherapy. In the case of 5-FU-induced, it reduced the gastrointestinal toxicity by increasing the intestinal permeability and inhibiting mucosal damage. Co-administration of EGCG and doxorubicin induced the death of liver cancer cells. EGCG has the ability to inhibit autophagic activity and stop hepatoma Hep3B cell proliferation This symbiotic approach is well-known in medical practice including in multiple chemotherapy.


Assuntos
Antineoplásicos , Neoplasias da Mama , Catequina , Curcumina , Citostáticos , Neoplasias Hepáticas , Antibacterianos/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias da Mama/metabolismo , Catequina/farmacologia , Catequina/uso terapêutico , Curcumina/farmacologia , Citostáticos/uso terapêutico , Doxorrubicina/farmacologia , Receptor alfa de Estrogênio , Receptor beta de Estrogênio , Estrogênios/uso terapêutico , Feminino , Fluoruracila/uso terapêutico , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Receptores de Estrogênio , Resveratrol/farmacologia , Resveratrol/uso terapêutico , beta Catenina
8.
Int J Pharm ; 625: 122064, 2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-35952802

RESUMO

The improved drug delivery systems (DDS) are needed for the targeted delivery of their therapeutic cargo (biologically active protein/peptide molecules, nucleic acids, vaccines, etc.) to diseased cells. Thus, we aimed to develop magnetite nanoparticles (Fe3O4), stabilized with polyethylene glycol (PEG) and decorated (surface-functionalized) with folic acid (FA) (Fe3O4@PEG@FA) to ensure targeted internalization in cells expressing the folic acid receptors (FR). The Fe3O4@PEG@FA nanoparticles were synthesized by co-precipitation in a one-pot methodology. Curcumin (Curc), a polyphenol with anti-tumoral activity, was loaded on the nanoparticles, and FA-targeted (Fe3O4@PEG@FA@Curc) and non-targeted (Fe3O4@PEG@Curc) systems were obtained. The internalization of Fe3O4@PEG@FA@Curc and Fe3O4@PEG@Curc nanoparticles was determined in two tumor cell lines, the FR-positive MCF-7 human breast carcinoma cell line and A549 human lung adenocarcinoma cell line, expressing a low level of FR. The results showed that MCF-7 cells internalize FA-functionalized nanoparticles to a greater extent than non-targeted ones and also than A549 cells. The competitive studies performed in the presence of FA in excess suggested that internalization is an FR-dependent process. The increased internalization of Fe3O4@PEG@FA@Curc nanoparticles in MCF-7 cells is correlated with increased cytotoxicity in this cell line compared to A549 cells. In conclusion, the FA-functionalized magnetic systems can ensure a better internalization of the nanoparticles and can be used to deliver various therapeutic agents, both in cancer treatment and also in the treatment of other inflammation-associated diseases such as rheumatoid arthritis, systemic lupus erythematosus, osteoarthritis, Crohn's disease or atherosclerosis.


Assuntos
Curcumina , Nanopartículas de Magnetita , Nanopartículas , Linhagem Celular Tumoral , Curcumina/farmacologia , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Ácido Fólico/química , Humanos , Nanopartículas de Magnetita/química , Nanopartículas/química , Polietilenoglicóis/química
9.
Antioxidants (Basel) ; 11(5)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35624823

RESUMO

This paper evaluated the chemical and biological properties of bee pollen samples from Romania. Firstly, the bee pollen alcoholic extracts (BPEs) were obtained from raw bee pollen harvested by Apis mellifera carpatica bees. The chemical composition of BPE was obtained by determination of total phenol content and total flavonoid content, UHPLC-DAD-ESI/MS analysis of phenolic compounds, and GC-MS analysis of fatty acids, esters, and terpenes. Additionally, the antioxidant activity was evaluated by the Trolox Equivalent Antioxidant Capacity method. Furthermore, the biological properties of BPE were evaluated (antimicrobial and cytotoxic activity). The raw BP samples studied in this paper had significant phenolic acid and flavonoid content, and moderate fatty acid, ester, and terpene content. P1, P2, and P4 have the highest TPC and TFC levels, and the best antioxidant activity. All BPEs studied had antimicrobial activity on pathogenic strains isolated from the clinic or standard strains. A synergistic antimicrobial effect of the BPEs was observed along with the soluble compounds of L. rhamnosus MF9 and E. faecalis 2M17 against some pathogenic (clinical) strains and, considering the tumour proliferation inhibitory activity, makes BP a potential prebiotic and antitumour agent for the gut environment.

10.
Nanomaterials (Basel) ; 12(10)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35630870

RESUMO

This paper aimed to develop two types of support materials with a mesoporous structure of mobile crystalline matter (known in the literature as MCM, namely MCM-41 and MCM-48) and to load them with gallic acid. Soft templating methodology was chosen for the preparation of the mesoporous structures-the cylindrical micelles with certain structural characteristics being formed due to the hydrophilic and hydrophobic intermolecular forces which occur between the molecules of the surfactants (cetyltrimethylammonium bromide-CTAB) when a minimal micellar ionic concentration is reached. These mesoporous supports were loaded with gallic acid using three different types of MCM-gallic acid ratios (1:0.41; 1:0.82 and 1:1.21)-and their characterizations by FTIR, SEM, XRD, BET and drug release were performed. It is worth mentioning that the loading was carried out using a vacuum-assisted methodology: the mesoporous materials are firstly kept under vacuum at ~0.1 barr for 30 min followed by the addition of the polyphenol solutions. The concentration of the solutions was adapted such that the final volume covered the wet mesoporous support and-in this case-upon reaching normal atmospheric pressure, the solution was pushed inside the pores, and thus the polyphenols were mainly loaded inside the pores. Based on the SBET data, it can be seen that the specific surface area decreased considerably with the increasing ratio of gallic acid; the specific surface area decreased 3.07 and 4.25 times for MCM-41 and MCM-48, respectively. The sample with the highest polyphenol content was further evaluated from a biological point of view, alone or in association with amoxicillin administration. As expected, the MCM-41 and MCM-48 were not protective against infections-but, due to the loading of the gallic acid, a potentiated inhibition was recorded for the tested gram-negative bacterial strains. Moreover, it is important to mention that these systems can be efficient solutions for the recovery of the gut microbiota after exposure to antibiotics, for instance.

11.
Int J Mol Sci ; 23(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408950

RESUMO

Melissa officinalis is a medicinal plant rich in biologically active compounds which is used worldwide for its therapeutic effects. Chemical studies on its composition have shown that it contains mainly flavonoids, terpenoids, phenolic acids, tannins, and essential oil. The main active constituents of Melissa officinalis are volatile compounds (geranial, neral, citronellal and geraniol), triterpenes (ursolic acid and oleanolic acid), phenolic acids (rosmarinic acid, caffeic acid and chlorogenic acid), and flavonoids (quercetin, rhamnocitrin, and luteolin). According to the biological studies, the essential oil and extracts of Melissa officinalis have active compounds that determine many pharmacological effects with potential medical uses. A new field of research has led to the development of controlled release systems with active substances from plants. Therefore, the essential oil or extract of Melissa officinalis has become a major target to be incorporated into various controlled release systems which allow a sustained delivery.


Assuntos
Melissa , Óleos Voláteis , Plantas Medicinais , Preparações de Ação Retardada , Flavonoides/farmacologia , Melissa/química , Óleos Voláteis/química , Óleos Voláteis/farmacologia , Extratos Vegetais/química
12.
Antioxidants (Basel) ; 12(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36670896

RESUMO

Honey has been used for therapeutic and nutritional purposes since ancient times. It was considered one of the essential medical assets in wound healing. According to research, honeybees have significant antibacterial, antioxidant, anti-inflammatory, antitumor, and wound-healing properties. Lately, scientific researchers have focused on apitherapy, using bee products to protect and strengthen the immune system. Since honey is the most important natural product rich in minerals, proteins, and vitamins, it has been intensively used in such therapies. Honey has gained significant consideration because of the beneficial role of its antioxidant compounds, such as enzymes, proteins, amino and organic acids, polyphenols, and carotenoids, but mainly due to flavonoids and phenolic acids. It has been proven that phenolic compounds are responsible for honey's biological activity and that its physicochemical properties, antioxidants, and antimicrobial potential are significant for human health. The review also presents some mechanisms of action and the medical applications of honey, such as wound healing dressings, skin grafts, honey-based nanofibers, and cochlear implants, as the most promising wound healing tools. This extensive review has been written to highlight honey's applications in medicine; its composition with the most important bioactive compounds also illustrates its synergistic effect with other natural products having remarkable therapeutic properties in wound healing.

13.
Nanomaterials (Basel) ; 11(9)2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34578695

RESUMO

Replacing the petroleum-based materials in the food industry is one of the main objectives of the scientists and decision makers worldwide. Biodegradable packaging will help diminish the environmental impact of human activity. Improving such biodegradable packaging materials by adding antimicrobial activity will not only extend the shelf life of foodstuff, but will also eliminate some health hazards associated with food borne diseases, and by diminishing the food spoilage will decrease the food waste. The objective of this research was to obtain innovative antibacterial films based on a biodegradable polymer, namely alginate. Films were characterized by environmental scanning electron microscopy (ESEM), Fourier-transform infrared spectroscopy (FTIR) and microscopy, complex thermal analysis (TG-DSC-FTIR), UV-Vis and fluorescence spectroscopy. Water vapor permeability and swelling behavior were also determined. As antimicrobial agents, we used silver spherical nanoparticles (Ag NPs) and lemongrass essential oil (LGO), which were found to act in a synergic way. The obtained films exhibited strong antibacterial activity against tested strains, two Gram-positive (Bacillus cereus and Staphylococcus aureus) and two Gram-negative (Escherichia coli and Salmonella Typhi). Best results were obtained against Bacillus cereus. The tests indicate that the antimicrobial films can be used as packaging, preserving the color, surface texture, and softness of cheese for 14 days. At the same time, the color of the films changed (darkened) as a function of temperature and light presence, a feature that can be used to monitor the storage conditions for sensitive food.

14.
Pharmaceutics ; 13(7)2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34371712

RESUMO

The petroleum-based materials could be replaced, at least partially, by biodegradable packaging. Adding antimicrobial activity to the new packaging materials can also help improve the shelf life of food and diminish the spoilage. The objective of this research was to obtain a novel antibacterial packaging, based on alginate as biodegradable polymer. The antibacterial activity was induced to the alginate films by adding various amounts of ZnO nanoparticles loaded with citronella (lemongrass) essential oil (CEO). The obtained films were characterized, and antibacterial activity was tested against two Gram-negative (Escherichia coli and Salmonella Typhi) and two Gram-positive (Bacillus cereus and Staphylococcus aureus) bacterial strains. The results suggest the existence of synergy between antibacterial activities of ZnO and CEO against all tested bacterial strains. The obtained films have a good antibacterial coverage, being efficient against several pathogens, the best results being obtained against Bacillus cereus. In addition, the films presented better UV light barrier properties and lower water vapor permeability (WVP) when compared with a simple alginate film. The preliminary tests indicate that the alginate films with ZnO nanoparticles and CEO can be used to successfully preserve the cheese. Therefore, our research evidences the feasibility of using alginate/ZnO/CEO films as antibacterial packaging for cheese in order to extend its shelf life.

15.
Pharmaceutics ; 13(7)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34201978

RESUMO

The novel controlled and localized delivery of drug molecules to target tissues using an external electric stimulus makes electro-responsive drug delivery systems both feasible and desirable, as well as entailing a reduction in the side effects. Novel micro-scaffold matrices were designed based on poly(lactic acid) (PLA) and graphene oxide (GO) via electrospinning. Quercetin (Q), a natural flavonoid, was loaded into the fiber matrices in order to investigate the potential as a model drug for wound dressing applications. The physico-chemical properties, electrical triggering capacity, antimicrobial assay and biocompatibility were also investigated. The newly fabricated PLA/GO/Q scaffolds showed uniform and smooth surface morphologies, without any beads, and with diameters ranging from 1107 nm (10%PLA/0.1GO/Q) to 1243 nm (10%PLA). The in vitro release tests of Q from the scaffolds showed that Q can be released much faster (up to 8640 times) when an appropriate electric field is applied compared to traditional drug-release approaches. For instance, 10 s of electric stimulation is enough to ensure the full delivery of the loaded Q from the 10%PLA/1%GO/Q microfiber scaffold at both 10 Hz and at 50 Hz. The antimicrobial tests showed the inhibition of bacterial film growth. Certainly, these materials could be loaded with more potent agents for anti-cancer, anti-infection, and anti-osteoporotic therapies. The L929 fibroblast cells cultured on these scaffolds were distributed homogeneously on the scaffolds, and the highest viability value of 82.3% was obtained for the 10%PLA/0.5%GO/Q microfiber scaffold. Moreover, the addition of Q in the PLA/GO matrix stimulated the production of IL-6 at 24 h, which could be linked to an acute inflammatory response in the exposed fibroblast cells, as a potential effect of wound healing. As a general conclusion, these results demonstrate the possibility of developing graphene oxide-based supports for the electrically triggered delivery of biological active agents, with the delivery rate being externally controlled in order to ensure personalized release.

16.
Foods ; 9(12)2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-33291604

RESUMO

New packaging materials based on biopolymers are gaining increasing attention due to many advantages like biodegradability or existence of renewable sources. Grouping more antimicrobials agents in the same packaging can create a synergic effect, resulting in either a better antimicrobial activity against a wider spectrum of spoilage agents or a lower required quantity of antimicrobials. In the present work, we obtained a biodegradable antimicrobial film that can be used as packaging material for food. Films based on chitosan as biodegradable polymer, with ZnO and Ag nanoparticles as filler/antimicrobial agents were fabricated by a casting method. The nanoparticles were loaded with citronella essential oil (CEO) in order to enhance the antimicrobial activity of the nanocomposite films. The tests made on Gram-positive, Gram-negative, and fungal strains indicated a broad-spectrum antimicrobial activity, with inhibition diameters of over 30 mm for bacterial strains and over 20 mm for fungal strains. The synergic effect was evidenced by comparing the antimicrobial results with chitosan/ZnO/CEO or chitosan/Ag/CEO simple films. According to the literature and our preliminary studies, these formulations are suitable as coating for fruits. The obtained nanocomposite films presented lower water vapor permeability values when compared with the chitosan control film. The samples were characterized by SEM, fluorescence and UV-Vis spectroscopy, FTIR spectroscopy and microscopy, and thermal analysis.

17.
Int J Mol Sci ; 21(21)2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33138182

RESUMO

Natural calcium phosphates derived from fish wastes are a promising material for biomedical application. However, their sintered ceramics are not fully characterized in terms of mechanical and biological properties. In this study, natural calcium phosphate was synthesized through a thermal calcination process from salmon fish bone wastes. The salmon-derived calcium phosphates (sCaP) were sintered at different temperatures to obtain natural calcium phosphate bioceramics and then were investigated in terms of their microstructure, mechanical properties and biocompatibility. In particular, this work is concerned with the effects of grain size on the relative density and microhardness of the sCaP bioceramics. Ca/P ratio of the sintered sCaP ranged from 1.73 to 1.52 when the sintering temperature was raised from 1000 to 1300 °C. The crystal phase of all the sCaP bioceramics obtained was biphasic and composed of hydroxyapatite (HA) and tricalcium phosphate (TCP). The density and microhardness of the sCaP bioceramics increased in the temperature interval 1000-1100 °C, while at temperatures higher than 1100 °C, these properties were not significantly altered. The highest compressive strength of 116 MPa was recorded for the samples sintered at 1100 °C. In vitro biocompatibility was also examined in the behavior of osteosarcoma (Saos-2) cells, indicating that the sCaP bioceramics had no cytotoxicity effect. Salmon-derived biphasic calcium phosphates (BCP) have the potential to contribute to the development of bone substituted materials.


Assuntos
Materiais Biocompatíveis/química , Neoplasias Ósseas/patologia , Substitutos Ósseos/química , Osso e Ossos/química , Fosfatos de Cálcio/farmacologia , Cerâmica/farmacologia , Osteossarcoma/patologia , Animais , Neoplasias Ósseas/tratamento farmacológico , Fosfatos de Cálcio/química , Proliferação de Células , Cerâmica/química , Humanos , Teste de Materiais , Osteossarcoma/tratamento farmacológico , Salmão , Propriedades de Superfície , Células Tumorais Cultivadas
18.
Molecules ; 25(17)2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32825791

RESUMO

In recent years, researchers focused their attention on mesoporous silica nanoparticles (MSNs) owing to the considerable advancements of the characterization methods, especially electron microscopy methods, which allowed for a clear visualization of the pore structure and the materials encapsulated within the pores, along with the X-ray diffraction (small angles) methods and specific surface area determination by Brunauer-Emmett-Teller (BET) technique. Mesoporous silica gained important consideration in biomedical applications thanks to its tunable pore size, high surface area, surface functionalization possibility, chemical stability, and pore nature. Specifically, the nature of the pores allows for the encapsulation and release of anti-cancer drugs into tumor tissues, which makes MSN ideal candidates as drug delivery carriers in cancer treatment. Moreover, the inner and outer surfaces of the MSN provide a platform for further functionalization approaches that could enhance the adsorption of the drug within the silica network and the selective targeting and controlled release to the desired site. Additionally, stimuli-responsive mesoporous silica systems are being used as mediators in cancer therapy, and through the release of the therapeutic agents hosted inside the pores under the action of specific triggering factors, it can selectively deliver them into tumor tissues. Another important application of the mesoporous silica nanomaterials is related to its ability to extract different hazardous species from aqueous media, some of these agents being antibiotics, pesticides, or anti-tumor agents. The purpose of this paper is to analyze the methods of MSN synthesis and related characteristics, the available surface functionalization strategies, and the most important applications of MSN in adsorption as well as release studies. Owing to the increasing antibiotic resistance, the need for developing materials for antibiotic removal from wastewaters is important and mesoporous materials already proved remarkable performances in environmental applications, including removal or even degradation of hazardous agents such as antibiotics and pesticides.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/química , Dióxido de Silício/química , Adsorção , Humanos
19.
Materials (Basel) ; 13(11)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545241

RESUMO

Glioblastoma (GBM), one of the most malignant types of human brain tumor, is resistant to conventional treatments and is associated with poor survival. Since the 3D extracellular matrix (ECM) of GBM microenvironment plays a significant role on the tumor behavior, the engineering of the ECM will help us to get more information on the tumor behavior and to define novel therapeutic strategies. In this study, polycaprolactone (PCL)/gelatin(Gel)/hyaluronic acid(HA) composite scaffolds with aligned and randomly oriented nanofibers were successfully fabricated by electrospinning for mimicking the extracellular matrix of GBM tumor. We investigated the effect of nanotopography and components of fibers on the mechanical, morphological, and hydrophilic properties of electrospun nanofiber as well as their biocompatibility properties. Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC) have been used to investigate possible interactions between components. The mean fiber diameter in the nanofiber matrix was increased with the presence of HA at low collector rotation speed. Moreover, the rotational velocity of the collector affected the fiber diameters as well as their homogenous distribution. Water contact angle measurements confirmed that hyaluronic acid-incorporated aligned nanofibers were more hydrophilic than that of random nanofibers. In addition, PCL/Gel/HA nanofibrous scaffold (7.9 MPa) exhibited a significant decrease in tensile strength compared to PCL/Gel nanofibrous mat (19.2 MPa). In-vitro biocompatibilities of nanofiber scaffolds were tested with glioblastoma cells (U251), and the PCL/Gel/HA scaffolds with random nanofiber showed improved cell adhesion and proliferation. On the other hand, PCL/Gel/HA scaffolds with aligned nanofiber were found suitable for enhancing axon growth and elongation supporting intracellular communication. Based on these results, PCL/Gel/HA composite scaffolds are excellent candidates as a biomimetic matrix for GBM and the study of the tumor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA