Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neoplasia ; 51: 100987, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38489912

RESUMO

Gene fusions are common in high-grade serous ovarian cancer (HGSC). Such genetic lesions may promote tumorigenesis, but the pathogenic mechanisms are currently poorly understood. Here, we investigated the role of a PIK3R1-CCDC178 fusion identified from a patient with advanced HGSC. We show that the fusion induces HGSC cell migration by regulating ERK1/2 and increases resistance to platinum treatment. Platinum resistance was associated with rod and ring-like cellular structure formation. These structures contained, in addition to the fusion protein, CIN85, a key regulator of PI3K-AKT-mTOR signaling. Our data suggest that the fusion-driven structure formation induces a previously unrecognized cell survival and resistance mechanism, which depends on ERK1/2-activation.


Assuntos
Classe Ia de Fosfatidilinositol 3-Quinase , Resistencia a Medicamentos Antineoplásicos , Sistema de Sinalização das MAP Quinases , Proteínas de Fusão Oncogênica , Neoplasias Ovarianas , Fosfatidilinositol 3-Quinases , Feminino , Humanos , Classe Ia de Fosfatidilinositol 3-Quinase/genética , Classe Ia de Fosfatidilinositol 3-Quinase/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Sistema de Sinalização das MAP Quinases/genética , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Platina , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo
2.
PLoS One ; 19(3): e0289699, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512819

RESUMO

MicroRNAs (miRNAs) are small molecules that play an essential role in regulating gene expression by post-transcriptional gene silencing. Their study is crucial in revealing the fundamental processes underlying pathologies and, in particular, cancer. To date, most studies on miRNA regulation consider the effect of specific miRNAs on specific target mRNAs, providing wet-lab validation. However, few tools have been developed to explain the miRNA-mediated regulation at the protein level. In this paper, the MoPC computational tool is presented, that relies on the partial correlation between mRNAs and proteins conditioned on the miRNA expression to predict miRNA-target interactions in multi-omic datasets. MoPC returns the list of significant miRNA-target interactions and plot the significant correlations on the heatmap in which the miRNAs and targets are ordered by the chromosomal location. The software was applied on three TCGA/CPTAC datasets (breast, glioblastoma, and lung cancer), returning enriched results in three independent targets databases.


Assuntos
MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteoma/genética , Proteoma/metabolismo , Neoplasias/genética , Software , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica
3.
BMC Bioinformatics ; 24(1): 443, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993778

RESUMO

Messenger RNA (mRNA) has an essential role in the protein production process. Predicting mRNA expression levels accurately is crucial for understanding gene regulation, and various models (statistical and neural network-based) have been developed for this purpose. A few models predict mRNA expression levels from the DNA sequence, exploiting the DNA sequence and gene features (e.g., number of exons/introns, gene length). Other models include information about long-range interaction molecules (i.e., enhancers/silencers) and transcriptional regulators as predictive features, such as transcription factors (TFs) and small RNAs (e.g., microRNAs - miRNAs). Recently, a convolutional neural network (CNN) model, called Xpresso, has been proposed for mRNA expression level prediction leveraging the promoter sequence and mRNAs' half-life features (gene features). To push forward the mRNA level prediction, we present miREx, a CNN-based tool that includes information about miRNA targets and expression levels in the model. Indeed, each miRNA can target specific genes, and the model exploits this information to guide the learning process. In detail, not all miRNAs are included, only a selected subset with the highest impact on the model. MiREx has been evaluated on four cancer primary sites from the genomics data commons (GDC) database: lung, kidney, breast, and corpus uteri. Results show that mRNA level prediction benefits from selected miRNA targets and expression information. Future model developments could include other transcriptional regulators or be trained with proteomics data to infer protein levels.


Assuntos
MicroRNAs , MicroRNAs/genética , RNA Mensageiro/genética , Mirex , Regulação da Expressão Gênica , Fatores de Transcrição/genética , Perfilação da Expressão Gênica
4.
Comput Methods Programs Biomed ; 234: 107504, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37004267

RESUMO

BACKGROUND AND OBJECTIVE: The functions of an organism and its biological processes result from the expression of genes and proteins. Therefore quantifying and predicting mRNA and protein levels is a crucial aspect of scientific research. Concerning the prediction of mRNA levels, the available approaches use the sequence upstream and downstream of the Transcription Start Site (TSS) as input to neural networks. The State-of-the-art models (e.g., Xpresso and Basenjii) predict mRNA levels exploiting Convolutional (CNN) or Long Short Term Memory (LSTM) Networks. However, CNN prediction depends on convolutional kernel size, and LSTM suffers from capturing long-range dependencies in the sequence. Concerning the prediction of protein levels, as far as we know, there is no model for predicting protein levels by exploiting the gene or protein sequences. METHODS: Here, we exploit a new model type (called Perceiver) for mRNA and protein level prediction, exploiting a Transformer-based architecture with an attention module to attend to long-range interactions in the sequences. In addition, the Perceiver model overcomes the quadratic complexity of the standard Transformer architectures. This work's contributions are 1. DNAPerceiver model to predict mRNA levels from the sequence upstream and downstream of the TSS; 2. ProteinPerceiver model to predict protein levels from the protein sequence; 3. Protein&DNAPerceiver model to predict protein levels from TSS and protein sequences. RESULTS: The models are evaluated on cell lines, mice, glioblastoma, and lung cancer tissues. The results show the effectiveness of the Perceiver-type models in predicting mRNA and protein levels. CONCLUSIONS: This paper presents a Perceiver architecture for mRNA and protein level prediction. In the future, inserting regulatory and epigenetic information into the model could improve mRNA and protein level predictions. The source code is freely available at https://github.com/MatteoStefanini/DNAPerceiver.


Assuntos
DNA , Redes Neurais de Computação , Animais , Camundongos , Algoritmos , Proteínas/genética , RNA Mensageiro/genética
5.
J Biomed Inform ; 129: 104057, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35339665

RESUMO

It is estimated that oncogenic gene fusions cause about 20% of human cancer morbidity. Identifying potentially oncogenic gene fusions may improve affected patients' diagnosis and treatment. Previous approaches to this issue included exploiting specific gene-related information, such as gene function and regulation. Here we propose a model that profits from the previous findings and includes the microRNAs in the oncogenic assessment. We present ChimerDriver, a tool to classify gene fusions as oncogenic or not oncogenic. ChimerDriver is based on a specifically designed neural network and trained on genetic and post-transcriptional information to obtain a reliable classification. The designed neural network integrates information related to transcription factors, gene ontologies, microRNAs and other detailed information related to the functions of the genes involved in the fusion and the gene fusion structure. As a result, the performances on the test set reached 0.83 f1-score and 96% recall. The comparison with state-of-the-art tools returned comparable or higher results. Moreover, ChimerDriver performed well in a real-world case where 21 out of 24 validated gene fusion samples were detected by the gene fusion detection tool Starfusion. ChimerDriver integrates transcriptional and post-transcriptional information in an ad-hoc designed neural network to effectively discriminate oncogenic gene fusions from passenger ones. ChimerDriver source code is freely available at https://github.com/martalovino/ChimerDriver.


Assuntos
MicroRNAs , Fusão Gênica , Humanos , MicroRNAs/genética , Redes Neurais de Computação , Fusão Oncogênica , Software
6.
BMC Bioinformatics ; 22(1): 360, 2021 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-34217219

RESUMO

BACKGROUND: Tumors are composed by a number of cancer cell subpopulations (subclones), characterized by a distinguishable set of mutations. This phenomenon, known as intra-tumor heterogeneity (ITH), may be studied using Copy Number Aberrations (CNAs). Nowadays ITH can be assessed at the highest possible resolution using single-cell DNA (scDNA) sequencing technology. Additionally, single-cell CNA (scCNA) profiles from multiple samples of the same tumor can in principle be exploited to study the spatial distribution of subclones within a tumor mass. However, since the technology required to generate large scDNA sequencing datasets is relatively recent, dedicated analytical approaches are still lacking. RESULTS: We present PhyliCS, the first tool which exploits scCNA data from multiple samples from the same tumor to estimate whether the different clones of a tumor are well mixed or spatially separated. Starting from the CNA data produced with third party instruments, it computes a score, the Spatial Heterogeneity score, aimed at distinguishing spatially intermixed cell populations from spatially segregated ones. Additionally, it provides functionalities to facilitate scDNA analysis, such as feature selection and dimensionality reduction methods, visualization tools and a flexible clustering module. CONCLUSIONS: PhyliCS represents a valuable instrument to explore the extent of spatial heterogeneity in multi-regional tumour sampling, exploiting the potential of scCNA data.


Assuntos
Variações do Número de Cópias de DNA , Neoplasias , Análise por Conglomerados , Heterogeneidade Genética , Humanos , Análise de Sequência de DNA , Análise de Célula Única
7.
Bioinformatics ; 37(19): 3353-3355, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-33772596

RESUMO

MOTIVATION: Fusion genes are both useful cancer biomarkers and important drug targets. Finding relevant fusion genes is challenging due to genomic instability resulting in a high number of passenger events. To reveal and prioritize relevant gene fusion events we have developed FUsionN Gene Identification toolset (FUNGI) that uses an ensemble of fusion detection algorithms with prioritization and visualization modules. RESULTS: We applied FUNGI to an ovarian cancer dataset of 107 tumor samples from 36 patients. Ten out of 11 detected and prioritized fusion genes were validated. Many of detected fusion genes affect the PI3K-AKT pathway with potential role in treatment resistance. AVAILABILITYAND IMPLEMENTATION: FUNGI and its documentation are available at https://bitbucket.org/alejandra_cervera/fungi as standalone or from Anduril at https://www.anduril.org. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

8.
Bioinformatics ; 36(10): 3248-3250, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32016382

RESUMO

SUMMARY: In the last decade, increasing attention has been paid to the study of gene fusions. However, the problem of determining whether a gene fusion is a cancer driver or just a passenger mutation is still an open issue. Here we present DEEPrior, an inherently flexible deep learning tool with two modes (Inference and Retraining). Inference mode predicts the probability of a gene fusion being involved in an oncogenic process, by directly exploiting the amino acid sequence of the fused protein. Retraining mode allows to obtain a custom prediction model including new data provided by the user. AVAILABILITY AND IMPLEMENTATION: Both DEEPrior and the protein fusions dataset are freely available from GitHub at (https://github.com/bioinformatics-polito/DEEPrior). The tool was designed to operate in Python 3.7, with minimal additional libraries. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Aprendizado Profundo , Software , Fusão Gênica , Probabilidade , Proteínas
9.
Cancers (Basel) ; 11(12)2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31817495

RESUMO

Approximately 18% of acute myeloid leukemia (AML) cases express a fusion transcript. However, few fusions are recurrent across AML and the identification of these rare chimeras is of interest to characterize AML patients. Here, we studied the transcriptome of 8 adult AML patients with poorly described chromosomal translocation(s), with the aim of identifying novel and rare fusion transcripts. We integrated RNA-sequencing data with multiple approaches including computational analysis, Sanger sequencing, fluorescence in situ hybridization and in vitro studies to assess the oncogenic potential of the ZEB2-BCL11B chimera. We detected 7 different fusions with partner genes involving transcription factors (OAZ-MAFK, ZEB2-BCL11B), tumor suppressors (SAV1-GYPB, PUF60-TYW1, CNOT2-WT1) and rearrangements associated with the loss of NF1 (CPD-PXT1, UTP6-CRLF3). Notably, ZEB2-BCL11B rearrangements co-occurred with FLT3 mutations and were associated with a poorly differentiated or mixed phenotype leukemia. Although the fusion alone did not transform murine c-Kit+ bone marrow cells, 45.4% of 14q32 non-rearranged AML cases were also BCL11B-positive, suggesting a more general and complex mechanism of leukemogenesis associated with BCL11B expression. Overall, by combining different approaches, we described rare fusion events contributing to the complexity of AML and we linked the expression of some chimeras to genomic alterations hitting known genes in AML.

10.
Int J Mol Sci ; 20(7)2019 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-30987060

RESUMO

Gene fusions have a very important role in the study of cancer development. In this regard, predicting the probability of protein fusion transcripts of developing into a cancer is a very challenging and yet not fully explored research problem. To this date, all the available approaches in literature try to explain the oncogenic potential of gene fusions based on protein domain analysis, that is cancer-specific and not easy to adapt to newly developed information. In our work, we choose the raw protein sequences as the input baseline, and propose the use of deep learning, and more specifically Convolutional Neural Networks, to infer the oncogenity probability score of gene fusion transcripts and to group them into a number of categories (e.g., oncogenic/not oncogenic). This is an inherently flexible methodology that, unlike previous approaches, can be re-trained with very less efforts on newly available data (for example, from a different cancer). Based on experimental results on a large dataset of pre-annotated gene fusions, our method is able to predict the oncogenity potential of gene fusion transcripts with accuracy of about 72%, which increases to 86% if we consider the only instances that are classified with a high confidence level.


Assuntos
Aprendizado Profundo , Fusão Oncogênica , Algoritmos , Humanos , Redes Neurais de Computação , Probabilidade
11.
Cancer ; 125(5): 712-725, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30480765

RESUMO

BACKGROUND: Aneuploidy occurs in more than 20% of acute myeloid leukemia (AML) cases and correlates with an adverse prognosis. METHODS: To understand the molecular bases of aneuploid acute myeloid leukemia (A-AML), this study examined the genomic profile in 42 A-AML cases and 35 euploid acute myeloid leukemia (E-AML) cases. RESULTS: A-AML was characterized by increased genomic complexity based on exonic variants (an average of 26 somatic mutations per sample vs 15 for E-AML). The integration of exome, copy number, and gene expression data revealed alterations in genes involved in DNA repair (eg, SLX4IP, RINT1, HINT1, and ATR) and the cell cycle (eg, MCM2, MCM4, MCM5, MCM7, MCM8, MCM10, UBE2C, USP37, CK2, CK3, CK4, BUB1B, NUSAP1, and E2F) in A-AML, which was associated with a 3-gene signature defined by PLK1 and CDC20 upregulation and RAD50 downregulation and with structural or functional silencing of the p53 transcriptional program. Moreover, A-AML was enriched for alterations in the protein ubiquitination and degradation pathway (eg, increased levels of UHRF1 and UBE2C and decreased UBA3 expression), response to reactive oxygen species, energy metabolism, and biosynthetic processes, which may help in facing the unbalanced protein load. E-AML was associated with BCOR/BCORL1 mutations and HOX gene overexpression. CONCLUSIONS: These findings indicate that aneuploidy-related and leukemia-specific alterations cooperate to tolerate an abnormal chromosome number in AML, and they point to the mitotic and protein degradation machineries as potential therapeutic targets.


Assuntos
Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Genômica/métodos , Leucemia Mieloide Aguda/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Aneuploidia , Ciclo Celular , Bandeamento Cromossômico , Feminino , Dosagem de Genes , Regulação Leucêmica da Expressão Gênica , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Proteólise , Sequenciamento do Exoma , Adulto Jovem
13.
Nat Commun ; 8: 15107, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28561063

RESUMO

Stromal content heavily impacts the transcriptional classification of colorectal cancer (CRC), with clinical and biological implications. Lineage-dependent stromal transcriptional components could therefore dominate over more subtle expression traits inherent to cancer cells. Since in patient-derived xenografts (PDXs) stromal cells of the human tumour are substituted by murine counterparts, here we deploy human-specific expression profiling of CRC PDXs to assess cancer-cell intrinsic transcriptional features. Through this approach, we identify five CRC intrinsic subtypes (CRIS) endowed with distinctive molecular, functional and phenotypic peculiarities: (i) CRIS-A: mucinous, glycolytic, enriched for microsatellite instability or KRAS mutations; (ii) CRIS-B: TGF-ß pathway activity, epithelial-mesenchymal transition, poor prognosis; (iii) CRIS-C: elevated EGFR signalling, sensitivity to EGFR inhibitors; (iv) CRIS-D: WNT activation, IGF2 gene overexpression and amplification; and (v) CRIS-E: Paneth cell-like phenotype, TP53 mutations. CRIS subtypes successfully categorize independent sets of primary and metastatic CRCs, with limited overlap on existing transcriptional classes and unprecedented predictive and prognostic performances.


Assuntos
Neoplasias Colorretais/classificação , Neoplasias Colorretais/genética , Células Estromais/metabolismo , Transcriptoma , Animais , Antineoplásicos Imunológicos/farmacologia , Linhagem da Célula , Cetuximab/farmacologia , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/imunologia , Receptores ErbB/metabolismo , Feminino , Perfilação da Expressão Gênica , Genes p53 , Glicólise , Xenoenxertos , Humanos , Fator de Crescimento Insulin-Like II/genética , Masculino , Camundongos , Instabilidade de Microssatélites , Mutação , Prognóstico , Transdução de Sinais , Células Estromais/patologia , Fator de Crescimento Transformador beta/metabolismo
14.
BMC Bioinformatics ; 18(1): 58, 2017 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-28114882

RESUMO

BACKGROUND: Latest Next Generation Sequencing technologies opened the way to a novel era of genomic studies, allowing to gain novel insights into multifactorial pathologies as cancer. In particular gene fusion detection and comprehension have been deeply enhanced by these methods. However, state of the art algorithms for gene fusion identification are still challenging. Indeed, they identify huge amounts of poorly overlapping candidates and all the reported fusions should be considered for in lab validation clearly overwhelming wet lab capabilities. RESULTS: In this work we propose a novel methodological approach and tool named FuGePrior for the prioritization of gene fusions from paired-end RNA-Seq data. The proposed pipeline combines state of the art tools for chimeric transcript discovery and prioritization, a series of filtering and processing steps designed by considering modern literature on gene fusions and an analysis on functional reliability of gene fusion structure. CONCLUSIONS: FuGePrior performance has been assessed on two publicly available paired-end RNA-Seq datasets: The first by Edgren and colleagues includes four breast cancer cell lines and a normal breast sample, whereas the second by Ren and colleagues comprises fourteen primary prostate cancer samples and their paired normal counterparts. FuGePrior results accounted for a reduction in the number of fusions output of chimeric transcript discovery tools that ranges from 65 to 75% depending on the considered breast cancer cell line and from 37 to 65% according to the prostate cancer sample under examination. Furthermore, since both datasets come with a partial validation we were able to assess the performance of FuGePrior in correctly prioritizing real gene fusions. Specifically, 25 out of 26 validated fusions in breast cancer dataset have been correctly labelled as reliable and biologically significant. Similarly, 2 out of 5 validated fusions in prostate dataset have been recognized as priority by FuGePrior tool.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Próstata/genética , Proteínas Recombinantes de Fusão/genética , Análise de Sequência de RNA , Algoritmos , Linhagem Celular Tumoral , Bases de Dados Genéticas , Feminino , Genômica , Humanos , Células MCF-7 , Masculino , Proteínas Recombinantes de Fusão/química , Reprodutibilidade dos Testes , Software
15.
Comput Struct Biotechnol J ; 15: 56-67, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27994798

RESUMO

Texture analysis is a major task in many areas of computer vision and pattern recognition, including biological imaging. Indeed, visual textures can be exploited to distinguish specific tissues or cells in a biological sample, to highlight chemical reactions between molecules, as well as to detect subcellular patterns that can be evidence of certain pathologies. This makes automated texture analysis fundamental in many applications of biomedicine, such as the accurate detection and grading of multiple types of cancer, the differential diagnosis of autoimmune diseases, or the study of physiological processes. Due to their specific characteristics and challenges, the design of texture analysis systems for biological images has attracted ever-growing attention in the last few years. In this paper, we perform a critical review of this important topic. First, we provide a general definition of texture analysis and discuss its role in the context of bioimaging, with examples of applications from the recent literature. Then, we review the main approaches to automated texture analysis, with special attention to the methods of feature extraction and encoding that can be successfully applied to microscopy images of cells or tissues. Our aim is to provide an overview of the state of the art, as well as a glimpse into the latest and future trends of research in this area.

16.
Comput Methods Programs Biomed ; 128: 86-99, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27040834

RESUMO

BACKGROUND AND OBJECTIVES: The automated analysis of indirect immunofluorescence images for Anti-Nuclear Autoantibody (ANA) testing is a fairly recent field that is receiving ever-growing interest from the research community. ANA testing leverages on the categorization of intensity level and fluorescent pattern of IIF images of HEp-2 cells to perform a differential diagnosis of important autoimmune diseases. Nevertheless, it suffers from tremendous lack of repeatability due to subjectivity in the visual interpretation of the images. The automatization of the analysis is seen as the only valid solution to this problem. Several works in literature address individual steps of the work-flow, nonetheless integrating such steps and assessing their effectiveness as a whole is still an open challenge. METHODS: We present a modular tool, ANAlyte, able to characterize a IIF image in terms of fluorescent intensity level and fluorescent pattern without any user-interactions. For this purpose, ANAlyte integrates the following: (i) Intensity Classifier module, that categorizes the intensity level of the input slide based on multi-scale contrast assessment; (ii) Cell Segmenter module, that splits the input slide into individual HEp-2 cells; (iii) Pattern Classifier module, that determines the fluorescent pattern of the slide based on the pattern of the individual cells. RESULTS: To demonstrate the accuracy and robustness of our tool, we experimentally validated ANAlyte on two different public benchmarks of IIF HEp-2 images with rigorous leave-one-out cross-validation strategy. We obtained overall accuracy of fluorescent intensity and pattern classification respectively around 85% and above 90%. We assessed all results by comparisons with some of the most representative state of the art works. CONCLUSIONS: Unlike most of the other works in the recent literature, ANAlyte aims at the automatization of all the major steps of ANA image analysis. Results on public benchmarks demonstrate that the tool can characterize HEp-2 slides in terms of intensity and fluorescent pattern with accuracy better or comparable with the state of the art techniques, even when such techniques are run on manually segmented cells. Hence, ANAlyte can be proposed as a valid solution to the problem of ANA testing automatization.


Assuntos
Autoanticorpos/química , Doenças Autoimunes/diagnóstico por imagem , Técnica Indireta de Fluorescência para Anticorpo , Processamento de Imagem Assistida por Computador/métodos , Algoritmos , Bases de Dados Factuais , Análise Discriminante , Células Epiteliais/metabolismo , Humanos , Microscopia de Fluorescência , Reconhecimento Automatizado de Padrão , Reprodutibilidade dos Testes , Fluxo de Trabalho
17.
Cancer Cell ; 27(4): 516-32, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25873174

RESUMO

A systematic characterization of the genetic alterations driving ALCLs has not been performed. By integrating massive sequencing strategies, we provide a comprehensive characterization of driver genetic alterations (somatic point mutations, copy number alterations, and gene fusions) in ALK(-) ALCLs. We identified activating mutations of JAK1 and/or STAT3 genes in ∼20% of 88 [corrected] ALK(-) ALCLs and demonstrated that 38% of systemic ALK(-) ALCLs displayed double lesions. Recurrent chimeras combining a transcription factor (NFkB2 or NCOR2) with a tyrosine kinase (ROS1 or TYK2) were also discovered in WT JAK1/STAT3 ALK(-) ALCL. All these aberrations lead to the constitutive activation of the JAK/STAT3 pathway, which was proved oncogenic. Consistently, JAK/STAT3 pathway inhibition impaired cell growth in vitro and in vivo.


Assuntos
Regulação Neoplásica da Expressão Gênica , Linfoma Anaplásico de Células Grandes/genética , Fator de Transcrição STAT3/metabolismo , Fator 3 Ativador da Transcrição/genética , Fator 3 Ativador da Transcrição/metabolismo , Animais , Linhagem Celular Tumoral , Células HEK293 , Humanos , Janus Quinase 1/genética , Camundongos , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/metabolismo , NF-kappa B/genética , Fosforilação , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Fator de Transcrição STAT3/genética , Transdução de Sinais , TYK2 Quinase/genética
18.
PLoS One ; 10(3): e0118192, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25799103

RESUMO

In this paper we present VDJSeq-Solver, a methodology and tool to identify clonal lymphocyte populations from paired-end RNA Sequencing reads derived from the sequencing of mRNA neoplastic cells. The tool detects the main clone that characterises the tissue of interest by recognizing the most abundant V(D)J rearrangement among the existing ones in the sample under study. The exact sequence of the clone identified is capable of accounting for the modifications introduced by the enzymatic processes. The proposed tool overcomes limitations of currently available lymphocyte rearrangements recognition methods, working on a single sequence at a time, that are not applicable to high-throughput sequencing data. In this work, VDJSeq-Solver has been applied to correctly detect the main clone and identify its sequence on five Mantle Cell Lymphoma samples; then the tool has been tested on twelve Diffuse Large B-Cell Lymphoma samples. In order to comply with the privacy, ethics and intellectual property policies of the University Hospital and the University of Verona, data is available upon request to supporto.utenti@ateneo.univr.it after signing a mandatory Materials Transfer Agreement. VDJSeq-Solver JAVA/Perl/Bash software implementation is free and available at http://eda.polito.it/VDJSeq-Solver/.


Assuntos
Simulação por Computador , Genes de Imunoglobulinas , Linfoma Difuso de Grandes Células B/diagnóstico , Linfoma de Célula do Manto/diagnóstico , Software , Recombinação V(D)J/genética , Algoritmos , Células Clonais , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma de Célula do Manto/genética , Reação em Cadeia da Polimerase , Análise de Sequência de RNA/métodos
19.
Comput Med Imaging Graph ; 40: 62-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25614095

RESUMO

The automatization of the analysis of Indirect Immunofluorescence (IIF) images is of paramount importance for the diagnosis of autoimmune diseases. This paper proposes a solution to one of the most challenging steps of this process, the segmentation of HEp-2 cells, through an adaptive marker-controlled watershed approach. Our algorithm automatically conforms the marker selection pipeline to the peculiar characteristics of the input image, hence it is able to cope with different fluorescent intensities and staining patterns without any a priori knowledge. Furthermore, it shows a reduced sensitivity to over-segmentation errors and uneven illumination, that are typical issues of IIF imaging.


Assuntos
Rastreamento de Células/métodos , Doenças do Tecido Conjuntivo/imunologia , Células Epiteliais/imunologia , Células Epiteliais/patologia , Imunofluorescência/métodos , Reconhecimento Automatizado de Padrão/métodos , Algoritmos , Anticorpos Antinucleares/imunologia , Linhagem Celular , Doenças do Tecido Conjuntivo/diagnóstico , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
Nat Commun ; 6: 8878, 2015 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27305450

RESUMO

Colorectal cancer (CRC) transcriptional subtypes have been recently identified by gene expression profiling. Here we describe an analytical pipeline, microRNA master regulator analysis (MMRA), developed to search for microRNAs potentially driving CRC subtypes. Starting from a microRNA-mRNA tumour expression data set, MMRA identifies candidate regulator microRNAs by assessing their subtype-specific expression, target enrichment in subtype mRNA signatures and network analysis-based contribution to subtype gene expression. When applied to a CRC data set of 450 samples, assigned to subtypes by 3 different transcriptional classifiers, MMRA identifies 24 candidate microRNAs, in most cases downregulated in the stem/serrated/mesenchymal (SSM) poor prognosis subtype. Functional validation in CRC cell lines confirms downregulation of the SSM subtype by miR-194, miR-200b, miR-203 and miR-429, which share target genes and pathways mediating this effect. These results show that, by combining statistical tests, target prediction and network analysis, MMRA effectively identifies microRNAs functionally associated to cancer subtypes.


Assuntos
Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , RNA Mensageiro/genética , Algoritmos , Linhagem Celular Tumoral , Neoplasias Colorretais/classificação , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/patologia , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , MicroRNAs/metabolismo , Fenótipo , Prognóstico , RNA Mensageiro/metabolismo , Software , Análise de Sobrevida , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA