Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cells ; 13(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38607081

RESUMO

Increased activation of ovarian primordial follicles in Erß knockout (ErßKO) rats becomes evident as early as postnatal day 8.5. To identify the ERß-regulated genes that may control ovarian primordial follicle activation, we analyzed the transcriptome profiles of ErßKO rat ovaries collected on postnatal days 4.5, 6.5, and 8.5. Compared to wildtype ovaries, ErßKO ovaries displayed dramatic downregulation of Indian hedgehog (Ihh) expression. IHH-regulated genes, including Hhip, Gli1, and Ptch1, were also downregulated in ErßKO ovaries. This was associated with a downregulation of steroidogenic enzymes Cyp11a1, Cyp19a1, and Hsd17b1. The expression of Ihh remained very low in ErßKO ovaries despite the high levels of Gdf9 and Bmp15, which are known upregulators of Ihh expression in the granulosa cells of activated ovarian follicles. Strikingly, the downregulation of the Ihh gene in ErßKO ovaries began to disappear on postnatal day 16.5 and recovered on postnatal day 21.5. In rat ovaries, the first wave of primordial follicles is rapidly activated after their formation, whereas the second wave of primordial follicles remains dormant in the ovarian cortex and slowly starts activating after postnatal day 12.5. We localized the expression of Ihh mRNA in postnatal day 8.5 wildtype rat ovaries but not in the age-matched ErßKO ovaries. In postnatal day 21.5 ErßKO rat ovaries, we detected Ihh mRNA mainly in the activated follicles in the ovaries' peripheral regions. Our findings indicate that the expression of Ihh in the granulosa cells of the activated first wave of ovarian follicles depends on ERß.


Assuntos
Receptor beta de Estrogênio , Proteínas Hedgehog , Animais , Feminino , Ratos , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Folículo Ovariano/metabolismo , Ovário/metabolismo , RNA Mensageiro/metabolismo
2.
Int J Mol Sci ; 25(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38542176

RESUMO

Loss of ERß increases primordial follicle growth activation (PFGA), leading to premature ovarian follicle reserve depletion. We determined the expression and gene regulatory functions of ERß in dormant primordial follicles (PdFs) and activated primary follicles (PrFs) using mouse models. PdFs and PrFs were isolated from 3-week-old Erß knockout (Erßnull) mouse ovaries, and their transcriptomes were compared with those of control Erßfl/fl mice. We observed a significant (≥2-fold change; FDR p-value ≤ 0.05) deregulation of approximately 5% of genes (866 out of 16,940 genes, TPM ≥ 5) in Erßnull PdFs; ~60% (521 out of 866) of the differentially expressed genes (DEGs) were upregulated, and 40% were downregulated, indicating that ERß has both transcriptional enhancing as well as repressing roles in dormant PdFs. Such deregulation of genes may make the Erßnull PdFs more susceptible to increased PFGA. When the PdFs undergo PFGA and form PrFs, many new genes are activated. During PFGA of Erßfl/fl follicles, we detected a differential expression of ~24% genes (4909 out of 20,743; ≥2-fold change; FDR p-value ≤ 0.05; TPM ≥ 5); 56% upregulated and 44% downregulated, indicating the gene enhancing and repressing roles of Erß-activated PrFs. In contrast, we detected a differential expression of only 824 genes in Erßnull follicles during PFGA (≥2-fold change; FDR p-value ≤ 0.05; TPM ≥ 5). Moreover, most (~93%; 770 out of 824) of these DEGs in activated Erßnull PrFs were downregulated. Such deregulation of genes in Erßnull activated follicles may impair their inhibitory role on PFGA. Notably, in both Erßnull PdFs and PrFs, we detected a significant number of epigenetic regulators and transcription factors to be differentially expressed, which suggests that lack of ERß either directly or indirectly deregulates the gene expression in PdFs and PrFs, leading to increased PFGA.


Assuntos
Receptor beta de Estrogênio , Folículo Ovariano , Feminino , Camundongos , Animais , Receptor beta de Estrogênio/metabolismo , Folículo Ovariano/metabolismo , Ovário/metabolismo , Regulação da Expressão Gênica , Transcriptoma , Camundongos Knockout
3.
Front Endocrinol (Lausanne) ; 13: 917464, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072937

RESUMO

Kisspeptins (KPs) secreted from the hypothalamic KP neurons act on KP receptors (KPRs) in gonadotropin (GPN) releasing hormone (GnRH) neurons to produce GnRH. GnRH acts on pituitary gonadotrophs to induce secretion of GPNs, namely follicle stimulating hormone (FSH) and luteinizing hormone (LH), which are essential for ovarian follicle development, oocyte maturation and ovulation. Thus, hypothalamic KPs regulate oocyte maturation indirectly through GPNs. KPs and KPRs are also expressed in the ovarian follicles across species. Recent studies demonstrated that intraovarian KPs also act directly on the KPRs expressed in oocytes to promote oocyte maturation and ovulation. In this review article, we have summarized published reports on the role of hypothalamic and ovarian KP-signaling in oocyte maturation. Gonadal steroid hormones regulate KP secretion from hypothalamic KP neurons, which in turn induces GPN secretion from the hypothalamic-pituitary (HP) axis. On the other hand, GPNs secreted from the HP axis act on the granulosa cells (GCs) and upregulate the expression of ovarian KPs. While KPs are expressed predominantly in the GCs, the KPRs are in the oocytes. Expression of KPs in the ovaries increases with the progression of the estrous cycle and peaks during the preovulatory GPN surge. Intrafollicular KP levels in the ovaries rise with the advancement of developmental stages. Moreover, loss of KPRs in oocytes in mice leads to failure of oocyte maturation and ovulation similar to that of premature ovarian insufficiency (POI). These findings suggest that GC-derived KPs may act on the KPRs in oocytes during their preovulatory maturation. In addition to the intraovarian role of KP-signaling in oocyte maturation, in vivo, a direct role of KP has been identified during in vitro maturation of sheep, porcine, and rat oocytes. KP-stimulation of rat oocytes, in vitro, resulted in Ca2+ release and activation of the mitogen-activated protein kinase, extracellular signal-regulated kinase 1 and 2. In vitro treatment of rat or porcine oocytes with KPs upregulated messenger RNA levels of the factors that favor oocyte maturation. In clinical trials, human KP-54 has also been administered successfully to patients undergoing assisted reproductive technologies (ARTs) for increasing oocyte maturation. Exogenous KPs can induce GPN secretion from hypothalamus; however, the possibility of direct KP action on the oocytes cannot be excluded. Understanding the direct in vivo and in vitro roles of KP-signaling in oocyte maturation will help in developing novel KP-based ARTs.


Assuntos
Kisspeptinas , Oogênese , Animais , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Kisspeptinas/metabolismo , Hormônio Luteinizante/metabolismo , Camundongos , Oócitos/fisiologia , Ratos , Ovinos , Suínos
4.
Int J Mol Sci ; 23(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35563527

RESUMO

Erythropoietin (EPO) signaling plays a vital role in erythropoiesis by regulating proliferation and lineage-specific differentiation of murine hematopoietic progenitor cells (HPCs). An important downstream response of EPO signaling is calcium (Ca2+) influx, which is regulated by transient receptor potential channel (TRPC) proteins, particularly TRPC2 and TRPC6. While EPO induces Ca2+ influx through TRPC2, TRPC6 inhibits the function of TRPC2. Thus, interactions between TRPC2 and TRPC6 regulate the rate of Ca2+ influx in EPO-induced erythropoiesis. In this study, we observed that the expression of TRPC6 in KIT-positive erythroid progenitor cells was regulated by DOT1L. DOT1L is a methyltransferase that plays an important role in many biological processes during embryonic development including early erythropoiesis. We previously reported that Dot1l knockout (Dot1lKO) HPCs in the yolk sac failed to develop properly, which resulted in lethal anemia. In this study, we detected a marked downregulation of Trpc6 gene expression in Dot1lKO progenitor cells in the yolk sac compared to the wild type (WT). The promoter and the proximal regions of the Trpc6 gene locus exhibited an enrichment of H3K79 methylation, which is mediated solely by DOT1L. However, the expression of Trpc2, the positive regulator of Ca2+ influx, remained unchanged, resulting in an increased TRPC2/TRPC6 ratio. As the loss of DOT1L decreased TRPC6, which inhibited Ca2+ influx by TRPC2, Dot1lKO HPCs in the yolk sac exhibited accelerated and sustained elevated levels of Ca2+ influx. Such heightened Ca2+ levels might have detrimental effects on the growth and proliferation of HPCs in response to EPO.


Assuntos
Cálcio , Eritropoetina , Histona-Lisina N-Metiltransferase , Animais , Cálcio/metabolismo , Cálcio da Dieta , Epoetina alfa , Células Precursoras Eritroides/metabolismo , Eritropoese , Eritropoetina/metabolismo , Eritropoetina/farmacologia , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Camundongos , Receptores da Eritropoetina/metabolismo , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/metabolismo , Canal de Cátion TRPC6
5.
Front Genet ; 13: 828086, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401699

RESUMO

DOT1L is essential for embryonic hematopoiesis but the precise mechanisms of its action remain unclear. The only recognized function of DOT1L is histone H3 lysine 79 (H3K79) methylation, which has been implicated in both transcriptional activation and repression. We observed that deletion of the mouse Dot1L gene (Dot1L-KO) or selective mutation of its methyltransferase domain (Dot1L-MM) can differentially affect early embryonic erythropoiesis. However, both mutations result in embryonic lethality by mid-gestation and growth of hematopoietic progenitor cells (HPCs) is similarly affected in extensively self-renewing erythroblast (ESRE) cultures established from yolk sac cells. To understand DOT1L-mediated gene regulation and to clarify the role of H3K79 methylation, we analyzed whole transcriptomes of wildtype and Dot1L-mutant ESRE cells. We observed that more than 80% of the differentially expressed genes (DEGs) were upregulated in the mutant ESRE cells either lacking the DOT1L protein or the DOT1L methyltransferase activity. However, approximately 45% of the DEGs were unique to either mutant group, indicating that DOT1L possesses both methyltransferase-dependent and -independent gene regulatory functions. Analyses of Gene Ontology and signaling pathways for the DEGs were consistent, with DEGs that were found to be common or unique to either mutant group. Genes related to proliferation of HPCs were primarily impacted in Dot1L-KO cells, while genes related to HPC development were affected in the Dot1L-MM cells. A subset of genes related to differentiation of HPCs were affected in both mutant groups of ESREs. Our findings suggest that DOT1L primarily acts to repress gene expression in HPCs, and this function can be independent of its methyltransferase activity.

6.
Front Endocrinol (Lausanne) ; 12: 596617, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33986724

RESUMO

O-GlcNAcylation is a dynamic post-translational modification where the sugar, O-linked ß-N-acetylglucosamine (O-GlcNAc) is added to or removed from various cytoplasmic, nuclear, and mitochondrial proteins. This modification is regulated by only two enzymes: O-GlcNAc transferase (OGT), which adds O-GlcNAc, and O-GlcNAcase (OGA), which removes the sugar from proteins. O-GlcNAcylation is integral to maintaining normal cellular function, especially in processes such as nutrient sensing, metabolism, transcription, and growth and development of the cell. Aberrant O-GlcNAcylation has been associated with a number of pathological conditions, including, neurodegenerative diseases, cancer, diabetes, and obesity. However, the role of O-GlcNAcylation in immune cell growth/proliferation, or other immune responses, is currently incompletely understood. In this review, we highlight the effects of O-GlcNAcylation on certain cells of the immune system, especially those involved in pro-inflammatory responses associated with diabetes and obesity.


Assuntos
Acetilglucosamina/imunologia , Sistema Imunitário/imunologia , Animais , Diabetes Mellitus/genética , Diabetes Mellitus/imunologia , Humanos , N-Acetilglucosaminiltransferases/genética , N-Acetilglucosaminiltransferases/imunologia , Obesidade/genética , Obesidade/imunologia
7.
FASEB J ; 35(2): e21272, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33423320

RESUMO

Interleukin 33 (IL33) signaling has been implicated in the establishment and maintenance of pregnancy and in pregnancy disorders. The goal of this project was to evaluate the role of IL33 signaling in rat pregnancy. The rat possesses hemochorial placentation with deep intrauterine trophoblast invasion; features also characteristic of human placentation. We generated and characterized a germline mutant rat model for IL33 using CRISPR/Cas9 genome editing. IL33 deficient rats exhibited deficits in lung responses to an inflammatory stimulus (Sephadex G-200) and to estrogen-induced uterine eosinophilia. Female rats deficient in IL33 were fertile and exhibited pregnancy outcomes (gestation length and litter size) similar to wild-type rats. Placental weight was adversely affected by the disruption of IL33 signaling. A difference in pregnancy-dependent adaptations to lipopolysaccharide (LPS) exposure was observed between wild-type and IL33 deficient pregnancies. Pregnancy in wild-type rats treated with LPS did not differ significantly from pregnancy in vehicle-treated wild-type rats. In contrast, LPS treatment decreased fetal survival rate, fetal and placental weights, and increased fetal growth restriction in IL33 deficient rats. In summary, a new rat model for investigating IL33 signaling has been established. IL33 signaling participates in the regulation of placental development and protection against LPS-induced fetal and placental growth restriction.


Assuntos
Retardo do Crescimento Fetal/metabolismo , Interleucina-33/metabolismo , Doenças Placentárias/metabolismo , Complicações Infecciosas na Gravidez/metabolismo , Transdução de Sinais , Animais , Feminino , Retardo do Crescimento Fetal/etiologia , Retardo do Crescimento Fetal/patologia , Interleucina-33/genética , Lipopolissacarídeos/toxicidade , Mutação , Doenças Placentárias/etiologia , Doenças Placentárias/patologia , Gravidez , Complicações Infecciosas na Gravidez/etiologia , Complicações Infecciosas na Gravidez/patologia , Resultado da Gravidez , Ratos , Ratos Sprague-Dawley
8.
J Biol Chem ; 294(22): 8973-8990, 2019 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-31010828

RESUMO

Chronic, low-grade inflammation increases the risk for atherosclerosis, cancer, and autoimmunity in diseases such as obesity and diabetes. Levels of CD4+ T helper 17 (Th17) cells, which secrete interleukin 17A (IL-17A), are increased in obesity and contribute to the inflammatory milieu; however, the relationship between signaling events triggered by excess nutrient levels and IL-17A-mediated inflammation is unclear. Here, using cytokine, quantitative real-time PCR, immunoprecipitation, and ChIP assays, along with lipidomics and MS-based approaches, we show that increased levels of the nutrient-responsive, post-translational protein modification, O-GlcNAc, are present in naive CD4+ T cells from a diet-induced obesity murine model and that elevated O-GlcNAc levels increase IL-17A production. We also found that increased binding of the Th17 master transcription factor RAR-related orphan receptor γ t variant (RORγt) at the IL-17 gene promoter and enhancer, as well as significant alterations in the intracellular lipid microenvironment, elevates the production of ligands capable of increasing RORγt transcriptional activity. Importantly, the rate-limiting enzyme of fatty acid biosynthesis, acetyl-CoA carboxylase 1 (ACC1), is O-GlcNAcylated and necessary for production of these RORγt-activating ligands. Our results suggest that increased O-GlcNAcylation of cellular proteins may be a potential link between excess nutrient levels and pathological inflammation.


Assuntos
Ácidos Graxos/biossíntese , Interleucina-17/metabolismo , Células Th17/metabolismo , Acetil-CoA Carboxilase/metabolismo , Acilação/efeitos dos fármacos , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Citocinas/metabolismo , Ácidos Graxos/análise , Feminino , Humanos , Interleucina-17/genética , Lipidômica/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/genética , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Regiões Promotoras Genéticas , Ligação Proteica , Piranos/farmacologia , Células Th17/citologia , Tiazóis/farmacologia , Ativação Transcricional/efeitos dos fármacos
9.
Proc Natl Acad Sci U S A ; 115(38): E8939-E8947, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30126987

RESUMO

Identifying novel pathways that promote robust function and longevity of cytotoxic T cells has promising potential for immunotherapeutic strategies to combat cancer and chronic infections. We show that sprouty 1 and 2 (Spry1/2) molecules regulate the survival and function of memory CD8+ T cells. Spry1/2 double-knockout (DKO) ovalbumin (OVA)-specific CD8+ T cells (OT-I cells) mounted more vigorous autoimmune diabetes than WT OT-I cells when transferred to mice expressing OVA in their pancreatic ß-islets. To determine the consequence of Spry1/2 deletion on effector and memory CD8+ T cell development and function, we used systemic infection with lymphocytic choriomeningitis virus (LCMV) Armstrong. Spry1/2 DKO LCMV gp33-specific P14 CD8+ T cells survive contraction better than WT cells and generate significantly more polyfunctional memory T cells. The larger number of Spry1/2 DKO memory T cells displayed enhanced infiltration into infected tissue, demonstrating that absence of Spry1/2 can result in increased recall capacity. Upon adoptive transfer into naive hosts, Spry1/2 DKO memory T cells controlled Listeria monocytogenes infection better than WT cells. The enhanced formation of more functional Spry1/2 DKO memory T cells was associated with significantly reduced mTORC1 activity and glucose uptake. Reduced p-AKT, p-FoxO1/3a, and T-bet expression was also consistent with enhanced survival and memory accrual. Collectively, loss of Spry1/2 enhances the survival of effector CD8+ T cells and results in the formation of more protective memory cells. Deleting Spry1/2 in antigen-specific CD8+ T cells may have therapeutic potential for enhancing the survival and functionality of effector and memory CD8+ T cells in vivo.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Linfócitos T CD8-Positivos/fisiologia , Memória Imunológica/genética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Ativação Linfocitária/genética , Proteínas de Membrana/imunologia , Fosfoproteínas/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Transferência Adotiva/métodos , Animais , Linfócitos T CD8-Positivos/transplante , Diferenciação Celular/genética , Diferenciação Celular/imunologia , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/urina , Modelos Animais de Doenças , Feminino , Humanos , Memória Imunológica/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/genética , Listeria monocytogenes/imunologia , Listeria monocytogenes/isolamento & purificação , Listeriose/imunologia , Listeriose/microbiologia , Listeriose/terapia , Ativação Linfocitária/imunologia , Masculino , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinases , Quimeras de Transplante
10.
Dis Model Mech ; 9(9): 1051-61, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27491076

RESUMO

Polycystic kidney disease (PKD) is characterized by slow expansion of fluid-filled cysts derived from tubules within the kidney. Cystic expansion results in injury to surrounding parenchyma and leads to inflammation, scarring and ultimately loss of renal function. Macrophages are a key element in this process, promoting cyst epithelial cell proliferation, cyst expansion and disease progression. Previously, we have shown that the microenvironment established by cystic epithelial cells can 'program' macrophages, inducing M2-like macrophage polarization that is characterized by expression of markers that include Arg1 and Il10 Here, we functionally characterize these macrophages, demonstrating that their differentiation enhances their ability to promote cyst cell proliferation. This observation indicates a model of reciprocal pathological interactions between cysts and the innate immune system: cyst epithelial cells promote macrophage polarization to a phenotype that, in turn, is especially efficient in promoting cyst cell proliferation and cyst growth. To better understand the genesis of this macrophage phenotype, we examined the role of IL-10, a regulatory cytokine shown to be important for macrophage-stimulated tissue repair in other settings. Herein, we show that the acquisition of the pathological macrophage phenotype requires IL-10 secretion by the macrophages. Further, we demonstrate a requirement for IL-10-dependent autocrine activation of the STAT3 pathway. These data suggest that the IL-10 pathway in macrophages plays an essential role in the pathological relationship between cysts and the innate immune system in PKD, and thus could be a potential therapeutic target.


Assuntos
Comunicação Autócrina , Diferenciação Celular , Interleucina-10/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Doenças Renais Policísticas/patologia , Fator de Transcrição STAT3/metabolismo , Comunicação Autócrina/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Técnicas de Cocultura , Meios de Cultivo Condicionados/farmacologia , Líquido Cístico/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Humanos , Fenótipo , Doenças Renais Policísticas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
11.
BMC Dev Biol ; 11: 12, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21352545

RESUMO

BACKGROUND: The signaling cascades that direct the morphological differentiation of the vascular system during early embryogenesis are not well defined. Several signaling pathways, including Notch and VEGF signaling, are critical for the formation of the vasculature in the mouse. To further understand the role of Notch signaling during endothelial differentiation and the genes regulated by this pathway, both loss-of-function and gain-of-function approaches were analyzed in vivo. RESULTS: Conditional transgenic models were used to expand and ablate Notch signaling in the early embryonic endothelium. Embryos with activated Notch1 signaling in the vasculature displayed a variety of defects, and died soon after E10.5. Most notably, the extraembryonic vasculature of the yolk sac displayed remodeling differentiation defects, with greatly enlarged lumens. These phenotypes were distinct from endothelial loss-of-function of RBPJ, a transcriptional regulator of Notch activity. Gene expression analysis of RNA isolated from the yolk sac endothelia of transgenic embryos indicated aberrant expression in a variety of genes in these models. In particular, a variety of secreted factors, including VEGF and TGF-ß family members, displayed coordinate expression defects in the loss-of-function and gain-of-function models. CONCLUSIONS: Morphological analyses of the in vivo models confirm and expand the understanding of Notch signaling in directing endothelial development, specifically in the regulation of vessel diameter in the intra- and extraembryonic vasculature. Expression analysis of these in vivo models suggests that the vascular differentiation defects may be due to the regulation of key genes through the Notch-RBPJ signaling axis. A number of these genes regulated by Notch signaling encode secreted factors, suggesting that Notch signaling may mediate remodeling and vessel diameter in the extraembryonic yolk sac via autocrine and paracrine cell communication. We propose a role for Notch signaling in elaborating the microenvironment of the nascent arteriole, suggesting novel regulatory connections between Notch signaling and other signaling pathways during endothelial differentiation.


Assuntos
Vasos Sanguíneos/embriologia , Receptores Notch/metabolismo , Transdução de Sinais , Saco Vitelino/metabolismo , Animais , Sequência de Bases , Diferenciação Celular , Endotélio/embriologia , Membranas Extraembrionárias/irrigação sanguínea , Membranas Extraembrionárias/metabolismo , Desenvolvimento Fetal , Imunofluorescência , Perfilação da Expressão Gênica , Inativação Gênica , Genótipo , Camundongos/embriologia , Camundongos Transgênicos , Análise em Microsséries , Reação em Cadeia da Polimerase , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Crescimento Transformador beta/genética , Fator A de Crescimento do Endotélio Vascular/genética , Saco Vitelino/irrigação sanguínea
12.
Blood ; 116(22): 4483-91, 2010 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-20798234

RESUMO

Histone methylation is an important regulator of gene expression; its coordinated activity is critical in complex developmental processes such as hematopoiesis. Disruptor of telomere silencing 1-like (DOT1L) is a unique histone methyltransferase that specifically methylates histone H3 at lysine 79. We analyzed Dot1L-mutant mice to determine influence of this enzyme on embryonic hematopoiesis. Mutant mice developed more slowly than wild-type embryos and died between embryonic days 10.5 and 13.5, displaying a striking anemia, especially apparent in small vessels of the yolk sac. Further, a severe, selective defect in erythroid, but not myeloid, differentiation was observed. Erythroid progenitors failed to develop normally, showing retarded progression through the cell cycle, accumulation during G0/G1 stage, and marked increase in apoptosis in response to erythroid growth factors. GATA2, a factor essential for early erythropoiesis, was significantly reduced in Dot1L-deficient cells, whereas expression of PU.1, a transcription factor that inhibits erythropoiesis and promotes myelopoiesis, was increased. These data suggest a model whereby DOT1L-dependent lysine 79 of histone H3 methylation serves as a critical regulator of a differentiation switch during early hematopoiesis, regulating steady-state levels of GATA2 and PU.1 transcription, thus controlling numbers of circulating erythroid and myeloid cells.


Assuntos
Embrião de Mamíferos/patologia , Eritropoese , Metiltransferases/genética , Mutação , Animais , Apoptose , Ciclo Celular , Células Cultivadas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Feminino , Fator de Transcrição GATA2/genética , Regulação da Expressão Gênica no Desenvolvimento , Hematopoese , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Histona-Lisina N-Metiltransferase , Histonas/metabolismo , Metilação , Metiltransferases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Transcrição Gênica , Saco Vitelino/citologia , Saco Vitelino/metabolismo
13.
Cell Signal ; 21(11): 1559-68, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19482078

RESUMO

Wnt proteins constitute a family of secreted signaling molecules that regulate highly conserved pathways essential for development and, when aberrantly activated, drive oncogenesis in a number of human cancers. A key feature of the most widely studied Wnt signaling cascade is the stabilization of cytosolic beta-catenin, resulting in beta-catenin nuclear translocation and transcriptional activation of multiple target genes. In addition to this canonical, beta-catenin-dependent pathway, Wnt3A has also been shown to stimulate RhoA GTPase. While the importance of activated Rho to non-canonical Wnt signaling is well appreciated, the potential contribution of Wnt3A-stimulated RhoA to canonical beta-catenin-dependent transcription has not been examined and is the focus of this study. We find that activated Rho is required for Wnt3A-stimulated osteoblastic differentiation in C3H10T1/2 mesenchymal stem cells, a biological phenomenon mediated by stabilized beta-catenin. Using expression microarrays and real-time RT-PCR analysis, we show that Wnt3A-stimulated transcription of a subset of target genes is Rho-dependent, indicating that full induction of these Wnt targets requires both beta-catenin and Rho activation. Significantly, neither beta-catenin stabilization nor nuclear translocation stimulated by Wnt3A is affected by inhibition or activation of RhoA. These findings identify Rho activation as a critical element of the canonical Wnt3A-stimulated, beta-catenin-dependent transcriptional program.


Assuntos
Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Diferenciação Celular , Linhagem Celular , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Transdução de Sinais , Transcrição Gênica , Proteínas Wnt/genética , Proteína Wnt3 , Proteína Wnt3A
14.
Eur J Immunol ; 33(10): 2687-95, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14515252

RESUMO

The adapter protein CrkL has been implicated in multiple signal transduction pathways in hematopoietic cells. In T lymphocytes, the recruitment of CrkL-C3G complexes has been correlated with hyporesponsiveness, implicating CrkL as a potential negative regulator. To test this hypothesis we examined T cell activation in CrkL-deficient mice. The CrkL(-/-) genotype was partially embryonic lethal. In viable CrkL(-/-) mice, peripheral blood counts were normal. The thymus from CrkL(-/-) mice had 40% fewer cells compared to littermates, but the proportion of thymocyte subsets was comparable. There was no discernable alteration in T cell function as reflected by T cell numbers, expression of memory markers, IL-2 production, proliferation, and differentiation into Th1/Th2 phenotypes. Immunization induced comparable levels of IgG2a and IgG1 antibodies. Chimeric mice, generated by transfer of CrkL(-/-) fetal liver cells into irradiated RAG2(-/-) recipients, also showed normal T cell function, arguing against selection via partial embryonic lethality. Our results indicate that CrkL is not absolutely required for T cell development or function, and argue against it being an essential component of a negative regulatory pathway in TCR signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Nucleares/fisiologia , Linfócitos T/fisiologia , Animais , Formação de Anticorpos , Diferenciação Celular , Proteínas de Ligação a DNA/fisiologia , Interferon gama/farmacologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Células Th1/fisiologia , Células Th2/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA