Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Structure ; 32(9): 1498-1506.e4, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39029460

RESUMO

Complex associating with SET1 (COMPASS) is a histone H3K4 tri-methyltransferase controlled by several regulatory subunits including CXXC zinc finger protein 1 (Cfp1). Prior studies established the structural underpinnings controlling H3K4me3 recognition by the PHD domain of Cfp1's yeast homolog (Spp1). However, metazoans Cfp1PHD lacks structural elements important for H3K4me3 stabilization in Spp1, suggesting that in metazoans, Cfp1PHD domain binds H3K4me3 differently. The structure of Cfp1PHD in complex with H3K4me3 shows unique features such as non-canonical coordination of the first zinc atom and a disulfide bond forcing the reorientation of Cfp1PHD N-terminus, thereby leading to an atypical H3K4me3 binding pocket. This configuration minimizes Cfp1PHD reliance on canonical residues important for histone binding functions of other PHD domains. Cancer-related mutations in Cfp1PHD impair H3K4me3 binding, implying a potential impact on epigenetic signaling. Our work highlights a potential diversification of PHD histone binding modes and the impact of cancer mutations on Cfp1 functions.


Assuntos
Histonas , Modelos Moleculares , Dedos de Zinco PHD , Ligação Proteica , Histonas/metabolismo , Histonas/química , Humanos , Sítios de Ligação , Cristalografia por Raios X , Mutação , Animais , Sequência de Aminoácidos
2.
J Proteome Res ; 23(7): 2561-2575, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38810023

RESUMO

Emergent advancements on the role of the intestinal microbiome for human health and disease necessitate well-defined intestinal cellular models to study and rapidly assess host, microbiome, and drug interactions. Differentiated Caco-2 cell line is commonly utilized as an epithelial model for drug permeability studies and has more recently been utilized for investigating host-microbiome interactions. However, its suitability to study such interactions remains to be characterized. Here, we employed multilevel proteomics to demonstrate that both spontaneous and butyrate-induced Caco-2 differentiations displayed similar protein and pathway changes, including the downregulation of proteins related to translation and proliferation and upregulation of functions implicated in host-microbiome interactions, such as cell adhesion, tight junction, extracellular vesicles, and responses to stimuli. Lysine acetylomics revealed that histone protein acetylation levels were decreased along with cell differentiation, while the acetylation in proteins associated with mitochondrial functions was increased. This study also demonstrates that, compared to spontaneous differentiation methods, butyrate-containing medium accelerates Caco-2 differentiation, with earlier upregulation of proteins related to host-microbiome interactions, suggesting its superiority for assay development using this intestinal model. Altogether, this multiomics study emphasizes the controlled progression of Caco-2 differentiation toward a specialized intestinal epithelial-like cell and establishes its suitability for investigating the host-microbiome interactions.


Assuntos
Butiratos , Diferenciação Celular , Proteômica , Humanos , Células CACO-2 , Proteômica/métodos , Butiratos/farmacologia , Acetilação , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/microbiologia , Microbioma Gastrointestinal , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adenocarcinoma/microbiologia , Proteoma/metabolismo , Proteoma/análise
3.
Proteomics ; 24(16): e2300570, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38794877

RESUMO

The diversity and complexity of the microbiome's genomic landscape are not always mirrored in its proteomic profile. Despite the anticipated proteomic diversity, observed complexities of microbiome samples are often lower than expected. Two main factors contribute to this discrepancy: limitations in mass spectrometry's detection sensitivity and bioinformatics challenges in metaproteomics identification. This study introduces a novel approach to evaluating sample complexity directly at the full mass spectrum (MS1) level rather than relying on peptide identifications. When analyzing under identical mass spectrometry conditions, microbiome samples displayed significantly higher complexity, as evidenced by the spectral entropy and peptide candidate entropy, compared to single-species samples. The research provides solid evidence for the complexity of microbiome in proteomics indicating the optimization potential of the bioinformatics workflow.


Assuntos
Entropia , Proteômica , Proteômica/métodos , Proteoma/análise , Microbiota/genética , Biologia Computacional/métodos , Animais , Humanos , Peptídeos/análise , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas/métodos
4.
Cell Mol Life Sci ; 80(11): 328, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37847286

RESUMO

Elevated mitochondrial metabolism promotes tumorigenesis of Embryonal Rhabdomyosarcomas (ERMS). Accordingly, targeting oxidative phosphorylation (OXPHOS) could represent a therapeutic strategy for ERMS. We previously demonstrated that genetic reduction of Staufen1 (STAU1) levels results in the inhibition of ERMS tumorigenicity. Here, we examined STAU1-mediated mechanisms in ERMS and focused on its potential involvement in regulating OXPHOS. We report the novel and differential role of STAU1 in mitochondrial metabolism in cancerous versus non-malignant skeletal muscle cells (NMSkMCs). Specifically, our data show that STAU1 depletion reduces OXPHOS and inhibits proliferation of ERMS cells. Our findings further reveal the binding of STAU1 to several OXPHOS mRNAs which affects their stability. Indeed, STAU1 depletion reduced the stability of OXPHOS mRNAs, causing inhibition of mitochondrial metabolism. In parallel, STAU1 depletion impacted negatively the HIF2α pathway which further modulates mitochondrial metabolism. Exogenous expression of HIF2α in STAU1-depleted cells reversed the mitochondrial inhibition and induced cell proliferation. However, opposite effects were observed in NMSkMCs. Altogether, these findings revealed the impact of STAU1 in the regulation of mitochondrial OXPHOS in cancer cells as well as its differential role in NMSkMCs. Overall, our results highlight the therapeutic potential of targeting STAU1 as a novel approach for inhibiting mitochondrial metabolism in ERMS.


Assuntos
Rabdomiossarcoma Embrionário , Humanos , Rabdomiossarcoma Embrionário/genética , Rabdomiossarcoma Embrionário/tratamento farmacológico , Rabdomiossarcoma Embrionário/metabolismo , Proteínas do Citoesqueleto/metabolismo , Transformação Celular Neoplásica , Carcinogênese/genética , Proliferação de Células/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/metabolismo
5.
Gut Microbes ; 15(1): 2186671, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36896938

RESUMO

Mounting evidence points to causative or correlative roles of gut microbiome in the development of a myriad of diseases ranging from gastrointestinal diseases, metabolic diseases to neurological disorders and cancers. Consequently, efforts have been made to develop and apply therapeutics targeting the human microbiome, in particular the gut microbiota, for treating diseases and maintaining wellness. Here we summarize the current development of gut microbiota-directed therapeutics with a focus on novel biotherapeutics, elaborate the need of advanced -omics approaches for evaluating the microbiota-type biotherapeutics, and discuss the clinical and regulatory challenges. We also discuss the development and potential application of ex vivo microbiome assays and in vitro intestinal cellular models in this context. Altogether, this review aims to provide a broad view of promises and challenges of the emerging field of microbiome-directed human healthcare.


Assuntos
Gastroenteropatias , Microbioma Gastrointestinal , Doenças Metabólicas , Microbiota , Neoplasias , Humanos
6.
Clin Nutr ; 42(2): 61-75, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36502573

RESUMO

Butyrate is a key energy source for colonocytes and is produced by the gut microbiota through fermentation of dietary fiber. Butyrate is a histone deacetylase inhibitor and also signals through three G-protein coupled receptors. It is clear that butyrate has an important role in gastrointestinal health and that butyrate levels can impact both host and microbial functions that are intimately coupled with each other. Maintaining optimal butyrate levels improves gastrointestinal health in animal models by supporting colonocyte function, decreasing inflammation, maintaining the gut barrier, and promoting a healthy microbiome. Butyrate has also shown protective actions in the context of intestinal diseases such as inflammatory bowel disease, graft-versus-host disease of the gastrointestinal tract, and colon cancer, whereas lower levels of butyrate and/or the microbes which are responsible for producing this metabolite are associated with disease and poorer health outcomes. However, clinical efforts to increase butyrate levels in humans and reverse these negative outcomes have generated mixed results. This article discusses our current understanding of the molecular mechanisms of butyrate action with a focus on the gastrointestinal system, the links between host and microbial factors, and the efforts that are currently underway to apply the knowledge gained from the bench to bedside.


Assuntos
Butiratos , Fibras na Dieta , Gastroenteropatias , Microbioma Gastrointestinal , Animais , Humanos , Butiratos/farmacologia , Neoplasias do Colo/prevenção & controle , Fibras na Dieta/metabolismo , Fibras na Dieta/uso terapêutico , Gastroenteropatias/tratamento farmacológico , Gastroenteropatias/metabolismo , Gastroenteropatias/prevenção & controle , Receptores Acoplados a Proteínas G/metabolismo , Microbioma Gastrointestinal/fisiologia
7.
Proteomics ; 23(21-22): e2200116, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36528842

RESUMO

Multiplexed quantitative proteomics using tandem mass tag (TMT) is increasingly used in -omic study of complex samples. While TMT-based proteomics has the advantages of the higher quantitative accuracy, fewer missing values, and reduced instrument analysis time, it is limited by the additional reagent cost. In addition, current TMT labeling workflows involve repeated small volume pipetting of reagents in volatile solvents, which may increase the sample-to-sample variations and is not readily suitable for high throughput applications. In this study, we demonstrated that the TMT labeling procedures could be streamlined by using pre-aliquoted dry TMT reagents in a 96 well plate or 12-tube strip. As little as 50 µg dry TMT per channel was used to label 6-12 µg peptides, yielding high TMT labeling efficiency (∼99%) in both microbiome and mammalian cell line samples. We applied this workflow to analyze 97 samples in a study to evaluate whether ice recrystallization inhibitors improve the cultivability and activity of frozen microbiota. The results demonstrated tight sample clustering corresponding to groups and consistent microbiome responses to prebiotic treatments. This study supports the use of TMT reagents that are pre-aliquoted, dried, and stored for robust quantitative proteomics and metaproteomics in high throughput applications.


Assuntos
Microbiota , Proteômica , Animais , Proteômica/métodos , Peptídeos/análise , Fluxo de Trabalho , Proteoma/análise , Mamíferos/metabolismo
8.
Anal Chem ; 94(45): 15648-15654, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36327159

RESUMO

The human gut microbiome is a complex system composed of hundreds of species, and metaproteomics can be used to explore their expressed functions. However, many lower abundance species are not detected by current metaproteomic techniques and represent the dark field of metaproteomics. We do not know the minimal abundance of a bacterium in a microbiome(depth) that can be detected by shotgun metaproteomics. In this study, we spiked 15N-labeled E. coli peptides at different percentages into peptides mixture derived from the human gut microbiome to evaluate the depth that can be achieved by shotgun metaproteomics. We observed that the number of identified peptides and peptide intensity from 15N-labeled E. coli were linearly correlated with the spike-in levels even when 15N-labeled E. coli was down to 0.5% of the biomass. Below that level, it was not detected. Interestingly, the match-between-run strategy significantly increased the number of quantified peptides even when 15N-labeled E. coli peptides were at low abundance. This is indicative that in metaproteomics of complex gut microbiomes many peptides from low abundant species are likely observable in MS1 but are not selected for MS2 by standard shotgun strategies.


Assuntos
Microbioma Gastrointestinal , Proteômica , Humanos , Proteômica/métodos , Escherichia coli , Bactérias , Peptídeos
9.
FEBS Lett ; 596(7): 898-909, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35122247

RESUMO

Crohn's disease (CD) is characterized by the chronic inflammation of the gastrointestinal tract. A dysbiotic microbiome and a defective immune system are linked to CD, where hydrogen sulfide (H2 S) microbial producers positively correlate with the severity of the disease. Atopobium parvulum is a key H2 S producer from the microbiome of CD patients. In this study, the biochemical characterization of two Atopobium parvulum cysteine desulfurases, ApSufS and ApCsdB, shows that the enzymes are allosterically regulated. Structural analyses reveal that ApSufS forms a dimer with conserved characteristics observed in type II cysteine desulfurases. Four residues surrounding the active site are essential to catalyse cysteine desulfurylation, and a segment of short-chain residues grant access for substrate binding. A better understanding of ApSufS will help future avenues for CD treatment.


Assuntos
Doença de Crohn , Cisteína , Actinobacteria , Liases de Carbono-Enxofre/química , Cisteína/metabolismo , Humanos
10.
Cancer Cell ; 40(1): 70-87.e15, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-34971568

RESUMO

We performed proteogenomic characterization of intrahepatic cholangiocarcinoma (iCCA) using paired tumor and adjacent liver tissues from 262 patients. Integrated proteogenomic analyses prioritized genetic aberrations and revealed hallmarks of iCCA pathogenesis. Aflatoxin signature was associated with tumor initiation, proliferation, and immune suppression. Mutation-associated signaling profiles revealed that TP53 and KRAS co-mutations may contribute to iCCA metastasis via the integrin-FAK-SRC pathway. FGFR2 fusions activated the Rho GTPase pathway and could be a potential source of neoantigens. Proteomic profiling identified four patient subgroups (S1-S4) with subgroup-specific biomarkers. These proteomic subgroups had distinct features in prognosis, genetic alterations, microenvironment dysregulation, tumor microbiota composition, and potential therapeutics. SLC16A3 and HKDC1 were further identified as potential prognostic biomarkers associated with metabolic reprogramming of iCCA cells. This study provides a valuable resource for researchers and clinicians to further identify molecular pathogenesis and therapeutic opportunities in iCCA.


Assuntos
Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/patologia , Colangiocarcinoma/patologia , Fígado/patologia , Proteogenômica , Neoplasias dos Ductos Biliares/genética , Colangiocarcinoma/genética , Humanos , Mutação/genética , Prognóstico , Proteogenômica/métodos , Proteômica , Microambiente Tumoral/imunologia
11.
Anal Chim Acta ; 1184: 339016, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34625243

RESUMO

Sulfur-containing metabolites are related to several physiologic disorders and metabolic diseases. In this study, a simultaneous identification and quantification strategy in one batch for determination of sulfhydryl-containing metabolites was developed using stable isotope labeling combined with liquid chromatography-tandem mass spectrometry (SIL-LC-MS). In the proposed method, a pair of isotope labeling reagents, D0/D5-N-ethylmaleimide (D0/D5-NEM), was used to derivatize sulfhydryl-containing metabolites in blood and plasma of normal- and high-fat-diet (NFD and HFD) hamsters for reduced (-SH) and total (-SH, -S-S-, S-glutathionylated proteins) analysis. Quality control (QC) samples and test samples were prepared for LC-MS analysis. First, both QC samples and stable isotope labeled internal standards were used to monitor the status of the instrument and ensure the reliability of the analysis. Subsequently, an inhouse database containing 45 sulfhydryl-containing metabolites was established by MS1 based on QC samples. Then, qualitatively differential sulfhydryl-containing metabolites were found by MS2 between the NFD and HFD hamsters of the test samples, including 3 in reduced and 8 in total analysis of blood samples, and 2 in reduced and 2 in total analysis of plasma samples. Next, in quantitative analysis, satisfied linearities for 6 sulfhydryl-containing metabolites were obtained with the correlation coefficient (R2) > 0.99 and absolute quantification was carried out. The results showed that glutathione and cysteine have different concentrations in blood and plasma of hamsters. Finally, the correlation of sulfhydryl-containing metabolites with blood lipid and oxidative stress levels was determined, which provided insight into the hyperlipidemia-related oxidative stress. Taken together, the developed method of simultaneous identification with the inhouse database and MS2 and quantification with standards in one batch provides a promising strategy for the analysis of sulfhydryl-containing metabolites in biological samples, which may promote the in-depth investigation on sulfhydryl-containing metabolites and related diseases.


Assuntos
Dieta Hiperlipídica , Espectrometria de Massas em Tandem , Cromatografia Líquida , Cricetinae , Marcação por Isótopo , Reprodutibilidade dos Testes
12.
J Proteome Res ; 20(9): 4393-4404, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34424714

RESUMO

Inflammatory bowel diseases (IBDs), including Crohn's disease (CD) and ulcerative colitis, are chronic diseases of the gastrointestinal tract, with an unknown etiology, that affect over 6.8 million people worldwide. To characterize disease pathogenesis, proteomic and bioinformatic analyses were performed on colon biopsies collected during diagnostic endoscopy from 119 treatment-naïve pediatric patients, including from 78 IBD patients and 41 non-IBD patients who served as controls. Due to the presence of noninflamed and/or inflamed regions in IBD patients, up to two biopsies were obtained from IBD patients as compared to a single noninflamed biopsy from non-IBD pediatric control patients. Additional biopsies were obtained and analyzed from 33 of the IBD patients after IBD-directed therapeutic intervention for comparison of pre- and post-treatment proteomes. SuperSILAC was utilized to perform quantitative analysis of homogenized tissues, which were processed by filter-aided sample preparation. Hierarchical clustering and principal component analyses revealed proteomic patterns that distinguished inflamed from noninflamed tissues independent of therapy. Gene ontology revealed that proteins downregulated in inflammation are associated with metabolism, whereas upregulated proteins contribute to protein processing. A comparison of pre- and post-treatment proteomes from CD patients identified over 100 proteins that are significantly different between patients who responded and those who did not respond to therapy, including creatine kinase B and basigin.


Assuntos
Colite Ulcerativa , Doença de Crohn , Doenças Inflamatórias Intestinais , Biópsia , Criança , Colite Ulcerativa/diagnóstico , Colite Ulcerativa/tratamento farmacológico , Colo , Doença de Crohn/diagnóstico , Doença de Crohn/tratamento farmacológico , Humanos , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/genética , Mucosa Intestinal , Proteômica
13.
Autophagy ; 17(11): 3671-3689, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33590792

RESUMO

Macrophage autophagy is a highly anti-atherogenic process that promotes the catabolism of cytosolic lipid droplets (LDs) to maintain cellular lipid homeostasis. Selective autophagy relies on tags such as ubiquitin and a set of selectivity factors including selective autophagy receptors (SARs) to label specific cargo for degradation. Originally described in yeast cells, "lipophagy" refers to the degradation of LDs by autophagy. Yet, how LDs are targeted for autophagy is poorly defined. Here, we employed mass spectrometry to identify lipophagy factors within the macrophage foam cell LD proteome. In addition to structural proteins (e.g., PLIN2), metabolic enzymes (e.g., ACSL) and neutral lipases (e.g., PNPLA2), we found the association of proteins related to the ubiquitination machinery (e.g., AUP1) and autophagy (e.g., HMGB, YWHA/14-3-3 proteins). The functional role of candidate lipophagy factors (a total of 91) was tested using a custom siRNA array combined with high-content cholesterol efflux assays. We observed that knocking down several of these genes, including Hmgb1, Hmgb2, Hspa5, and Scarb2, significantly reduced cholesterol efflux, and SARs SQSTM1/p62, NBR1 and OPTN localized to LDs, suggesting a role for these in lipophagy. Using yeast lipophagy assays, we established a genetic requirement for several candidate lipophagy factors in lipophagy, including HSPA5, UBE2G2 and AUP1. Our study is the first to systematically identify several LD-associated proteins of the lipophagy machinery, a finding with important biological and therapeutic implications. Targeting these to selectively enhance lipophagy to promote cholesterol efflux in foam cells may represent a novel strategy to treat atherosclerosis.Abbreviations: ADGRL3: adhesion G protein-coupled receptor L3; agLDL: aggregated low density lipoprotein; AMPK: AMP-activated protein kinase; APOA1: apolipoprotein A1; ATG: autophagy related; AUP1: AUP1 lipid droplet regulating VLDL assembly factor; BMDM: bone-marrow derived macrophages; BNIP3L: BCL2/adenovirus E1B interacting protein 3-like; BSA: bovine serum albumin; CALCOCO2: calcium binding and coiled-coil domain 2; CIRBP: cold inducible RNA binding protein; COLGALT1: collagen beta(1-O)galactosyltransferase 1; CORO1A: coronin 1A; DMA: deletion mutant array; Faa4: long chain fatty acyl-CoA synthetase; FBS: fetal bovine serum; FUS: fused in sarcoma; HMGB1: high mobility group box 1; HMGB2: high mobility group box 2: HSP90AA1: heat shock protein 90: alpha (cytosolic): class A member 1; HSPA5: heat shock protein family A (Hsp70) member 5; HSPA8: heat shock protein 8; HSPB1: heat shock protein 1; HSPH1: heat shock 105kDa/110kDa protein 1; LDAH: lipid droplet associated hydrolase; LIPA: lysosomal acid lipase A; LIR: LC3-interacting region; MACROH2A1: macroH2A.1 histone; MAP1LC3: microtubule-associated protein 1 light chain 3; MCOLN1: mucolipin 1; NBR1: NBR1, autophagy cargo receptor; NPC2: NPC intracellular cholesterol transporter 2; OPTN: optineurin; P/S: penicillin-streptomycin; PLIN2: perilipin 2; PLIN3: perilipin 3; PNPLA2: patatin like phospholipase domain containing 2; RAB: RAB, member RAS oncogene family; RBBP7, retinoblastoma binding protein 7, chromatin remodeling factor; SAR: selective autophagy receptor; SCARB2: scavenger receptor class B, member 2; SGA: synthetic genetic array; SQSTM1: sequestosome 1; TAX1BP1: Tax1 (human T cell leukemia virus type I) binding protein 1; TFEB: transcription factor EB; TOLLIP: toll interacting protein; UBE2G2: ubiquitin conjugating enzyme E2 G2; UVRAG: UV radiation resistance associated gene; VDAC2: voltage dependent anion channel 2; VIM: vimentin.


Assuntos
Autofagia , Colesterol/metabolismo , Células Espumosas/metabolismo , Gotículas Lipídicas/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Gotículas Lipídicas/fisiologia , Proteoma/metabolismo , Saccharomyces cerevisiae/metabolismo , Ubiquitinação
14.
Anal Chem ; 92(24): 15711-15718, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33253538

RESUMO

The gut microbiome and its metabolic processes are dynamic systems. Surprisingly, our understanding of gut microbiome dynamics is limited. Here, we report a metaproteomic workflow that involves protein stable isotope probing (protein-SIP) and identification/quantification of partially labeled peptides. We also developed a package, which we call MetaProfiler, that corrects for false identifications and performs phylogenetic and time series analysis for the study of microbiome dynamics. From the stool sample of five mice that were fed with 15N hydrolysate from Ralstonia eutropha, we identified 12 326 nonredundant unlabeled peptides, of which 8256 of their heavy counterparts were quantified. These peptides revealed incorporation profiles over time that were different between and within taxa, as well as between and within clusters of orthologous groups (COGs). Our study helps unravel the complex dynamics of protein synthesis and bacterial dynamics in the mouse microbiome. MetaProfiler and the bioinformatic pipeline are available at https://github.com/northomics/MetaProfiler.git.


Assuntos
Proteínas de Bactérias/análise , Cupriavidus necator/química , Peptídeos/análise , Proteômica , Animais , Proteínas de Bactérias/metabolismo , Marcação por Isótopo , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/metabolismo
15.
Cell Death Dis ; 11(8): 665, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32820145

RESUMO

The proprotein convertases (PCs) are responsible for the maturation of precursor proteins, and are involved in multiple and critical biological processes. Over the past 30 years, the PCs have had great translational applications, but the physiological roles of PC7, the seventh member of the family, are still obscure. Searching for new substrates of PC7, a quantitative proteomics screen for selective enrichment of N-glycosylated polypeptides secreted from hepatic HuH7 cells identified two human type-II transmembrane proteins of unknown function(s): Cancer Susceptibility Candidate 4 (CASC4) and Golgi Phosphoprotein of 130 kDa (GPP130/GOLIM4). Concentrating on CASC4, its mutagenesis characterized the PC7/Furin-shedding site to occur at KR66↓NS, in HEK293 cells. We defined PC7 and Furin trafficking and activity, and demonstrated that CASC4 shedding occurs in acidic endosomes and/or in the trans-Golgi Network. Our data unraveled a cancer-protective role for CASC4, because siRNA silencing of endogenous CASC4 expression in the invasive triple-negative breast cancer human cell line MDA-MB-231 resulted in a significantly increased cellular migration and invasion. Conversely, MDA-MB-231 cells stably expressing CASC4 exhibited reduced migration and invasion, which can be explained by an increased number of paxillin-positive focal adhesions. This phenotypic cancer-protective role of CASC4 is reversed in cells overexpressing an optimally PC7/Furin-cleaved CASC4 mutant, or upon overexpression of the N-terminally convertase-generated membrane-bound segment. This phenotype was associated with increased formation of podosome-like structures, especially evident in cells overexpressing the N-terminal fragment. In accord, breast cancer patients' data sets show that high CASC4 and PCSK7 expression levels predict a significantly worse prognosis compared to high CASC4 but low PCSK7 levels. In conclusion, CASC4 shedding not only disrupts its anti-migratory/invasive role, but also generates a membrane-bound fragment that drastically modifies the actin cytoskeleton, resulting in an enhanced cellular migration and invasion. This phenotype might be clinically relevant in the prognosis of breast cancer patients.


Assuntos
Furina/metabolismo , Proteínas de Neoplasias/metabolismo , Subtilisinas/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Progressão da Doença , Endossomos/metabolismo , Furina/genética , Células HEK293 , Hepatócitos/metabolismo , Humanos , Proteínas de Neoplasias/genética , Pró-Proteína Convertases/metabolismo , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteômica/métodos , Subtilisinas/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
16.
Nat Commun ; 11(1): 4120, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32807798

RESUMO

Lysine acetylation (Kac), an abundant post-translational modification (PTM) in prokaryotes, regulates various microbial metabolic pathways. However, no studies have examined protein Kac at the microbiome level, and it remains unknown whether Kac level is altered in patient microbiomes. Herein, we use a peptide immuno-affinity enrichment strategy coupled with mass spectrometry to characterize protein Kac in the microbiome, which successfully identifies 35,200 Kac peptides from microbial or human proteins in gut microbiome samples. We demonstrate that Kac is widely distributed in gut microbial metabolic pathways, including anaerobic fermentation to generate short-chain fatty acids. Applying to the analyses of microbiomes of patients with Crohn's disease identifies 52 host and 136 microbial protein Kac sites that are differentially abundant in disease versus controls. This microbiome-wide acetylomic approach aids in advancing functional microbiome research.


Assuntos
Doença de Crohn/metabolismo , Microbioma Gastrointestinal/fisiologia , Lisina/metabolismo , Acetilação , Voluntários Saudáveis , Humanos , Análise Multivariada , Proteômica , Espectrometria de Massas em Tandem
17.
Bioinformatics ; 36(14): 4171-4179, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32369596

RESUMO

MOTIVATION: Enzymatic digestion of proteins before mass spectrometry analysis is a key process in metaproteomic workflows. Canonical metaproteomic data processing pipelines typically involve matching spectra produced by the mass spectrometer to a theoretical spectra database, followed by matching the identified peptides back to parent-proteins. However, the nature of enzymatic digestion produces peptides that can be found in multiple proteins due to conservation or chance, presenting difficulties with protein and functional assignment. RESULTS: To combat this challenge, we developed pepFunk, a peptide-centric metaproteomic workflow focused on the analysis of human gut microbiome samples. Our workflow includes a curated peptide database annotated with Kyoto Encyclopedia of Genes and Genomes (KEGG) terms and a gene set variation analysis-inspired pathway enrichment adapted for peptide-level data. Analysis using our peptide-centric workflow is fast and highly correlated to a protein-centric analysis, and can identify more enriched KEGG pathways than analysis using protein-level data. Our workflow is open source and available as a web application or source code to be run locally. AVAILABILITY AND IMPLEMENTATION: pepFunk is available online as a web application at https://shiny.imetalab.ca/pepFunk/ with open-source code available from https://github.com/northomics/pepFunk. CONTACT: dfigeys@uottawa.ca. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Microbioma Gastrointestinal , Biologia Computacional , Humanos , Peptídeos , Proteínas , Software
18.
J Proteomics ; 220: 103764, 2020 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-32247174

RESUMO

The variation in the bioavailability of oxygen constitutes the environmental conditions found by bacteria in their passage through the host gastro-intestinal tract. Given the importance of oxygen in the defense mechanism of bacteria, it is important to understand how bacteria respond to this stress at a metabolic level. The probiotic strain Enterococcus durans LAB18S was cultivated under aerobic and anaerobic conditions using prebiotic oligosaccharides as carbon source. The whole cell proteome and secretome were analyzed through label-free quantitative proteomics approach. The results showed that the LAB18S isolate when grown with fructo-oligosacchrides (FOS) showed a higher number of differentially expressed proteins compared to samples with galacto-oligosaccharides (GOS) or glucose. Clinically important enzymes for the treatment of cancer, L-asparaginase and arginine deiminase, were overexpressed when the isolate was cultured in FOS. In addition, the absence of oxygen induced the strain to produce proteins related to cell multiplication, cell wall integrity and resistance, and H2O2 detoxification. This study showed that E. durans LAB18S growing on FOS was stimulated to produce clinically important biomolecules, including proteins that have been investigated as potential antineoplastic agents. Significance: The probiotic strain E. durans LAB18S produce clinically relevant enzymes for the treatment of cancer when cultivated in symbiosis with fructo-oligosacchrides (FOS). In addition, proteins associated with cellular multiplication, cell wall integrity and resistance, and H2O2 detoxification were induced under anaerobic growth. These characteristics could be relevant to support maintenance of intestinal health.


Assuntos
Probióticos , Anaerobiose , Enterococcus , Peróxido de Hidrogênio , Oligossacarídeos , Proteômica
19.
Anal Chem ; 92(1): 1618-1627, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31809011

RESUMO

Glycosylation is one of the most important post-translational modifications in biological systems. Current glycoproteome methods mainly focus on qualitative identification of glycosylation sites or intact glycopeptides. However, the systematic quantitation of glycoproteins has remained largely unexplored. Here, we developed a chemoenzymatic method to quantitatively investigate N-glycoproteome based on the N-glycan types. Taking advantage of the specificity of different endoglycosidases and isotope dimethyl labeling, six N-glycan types of structures linked on each glycopeptide, including high-mannose/hybrid, biantennary, and triantennary with/without core fucose, were quantified. As a proof of principle, the glycoproteomic N-glycan type quantitative (glyco-TQ) method was first used to determine the N-glycan type composition of the immunoglobulin G1 (IgG1) Fc fragment. Then we applied the method to analyze the glycan type profile of proteins from the breast cancer cell line MCF7, and we quantitatively revealed the N-glycan type microheterogeneity at the glycopeptide and glycoprotein level. The novel quantitative strategy to evaluate the relative intensity of the six states of N-glycan type glycosylation on each site provides a new avenue to investigate the function of glycoproteins in broad areas, such as cancer biomarker research, pharmaceuticals characterization, and antiglycan vaccine development.


Assuntos
Polissacarídeos/análise , Proteômica , Glicosilação , Humanos , Células MCF-7 , Espectrometria de Massas , Polissacarídeos/metabolismo , Células Tumorais Cultivadas
20.
Proteomics ; 19(16): e1800363, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31321880

RESUMO

The gut microbiome has been shown to play a significant role in human healthy and diseased states. The dynamic signaling that occurs between the host and microbiome is critical for the maintenance of host homeostasis. Analyzing the human microbiome with metaproteomics, metabolomics, and integrative multi-omics analyses can provide significant information on markers for healthy and diseased states, allowing for the eventual creation of microbiome-targeted treatments for diseases associated with dysbiosis. Metaproteomics enables functional activity information to be gained from the microbiome samples, while metabolomics provides insight into the overall metabolic states affecting/representing the host-microbiome interactions. Combining these functional -omic platforms together with microbiome composition profiling allows for a holistic overview on the functional and metabolic state of the microbiome and its influence on human health. Here the benefits of metaproteomics, metabolomics, and the integrative multi-omic approaches to investigating the gut microbiome in the context of human health and diseases are reviewed.


Assuntos
Bactérias/metabolismo , Microbioma Gastrointestinal , Perfilação da Expressão Gênica/métodos , Metabolômica/métodos , Microbiota , Proteômica/métodos , Bactérias/classificação , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/microbiologia , Obesidade/genética , Obesidade/metabolismo , Obesidade/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA