Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Cell Biol ; 25(9): 1303-1318, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37563253

RESUMO

Cell growth is regulated by the mammalian/mechanistic target of rapamycin complex 1 (mTORC1), which functions both as a nutrient sensor and a master controller of virtually all biosynthetic pathways. This ensures that cells are metabolically active only when conditions are optimal for growth. Notably, although mTORC1 is known to regulate fatty acid biosynthesis, how and whether the cellular lipid biosynthetic capacity signals back to fine-tune mTORC1 activity remains poorly understood. Here we show that mTORC1 senses the capacity of a cell to synthesise fatty acids by detecting the levels of malonyl-CoA, an intermediate of this biosynthetic pathway. We find that, in both yeast and mammalian cells, this regulation is direct, with malonyl-CoA binding to the mTOR catalytic pocket and acting as a specific ATP-competitive inhibitor. When fatty acid synthase (FASN) is downregulated/inhibited, elevated malonyl-CoA levels are channelled to proximal mTOR molecules that form direct protein-protein interactions with acetyl-CoA carboxylase 1 (ACC1) and FASN. Our findings represent a conserved and unique homeostatic mechanism whereby impaired fatty acid biogenesis leads to reduced mTORC1 activity to coordinately link this metabolic pathway to the overall cellular biosynthetic output. Moreover, they reveal the existence of a physiological metabolite that directly inhibits the activity of a signalling kinase in mammalian cells by competing with ATP for binding.


Assuntos
Acetil-CoA Carboxilase , Malonil Coenzima A , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Malonil Coenzima A/metabolismo , Serina-Treonina Quinases TOR/genética , Ácidos Graxos/metabolismo , Mamíferos/metabolismo , Trifosfato de Adenosina
2.
Nat Cell Biol ; 24(9): 1407-1421, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36097071

RESUMO

Mechanistic target of rapamycin complex 1 (mTORC1) senses nutrient availability to appropriately regulate cellular anabolism and catabolism. During nutrient restriction, different organs in an animal do not respond equally, with vital organs being relatively spared. This raises the possibility that mTORC1 is differentially regulated in different cell types, yet little is known about this mechanistically. The Rag GTPases, RagA or RagB bound to RagC or RagD, tether mTORC1 in a nutrient-dependent manner to lysosomes where mTORC1 becomes activated. Although the RagA and B paralogues were assumed to be functionally equivalent, we find here that the RagB isoforms, which are highly expressed in neurons, impart mTORC1 with resistance to nutrient starvation by inhibiting the RagA/B GTPase-activating protein GATOR1. We further show that high expression of RagB isoforms is observed in some tumours, revealing an alternative strategy by which cancer cells can retain elevated mTORC1 upon low nutrient availability.


Assuntos
Complexos Multiproteicos , Transdução de Sinais , Animais , Encéfalo/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
3.
Cell ; 184(3): 655-674.e27, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33497611

RESUMO

Ras GTPase-activating protein-binding proteins 1 and 2 (G3BP1 and G3BP2, respectively) are widely recognized as core components of stress granules (SGs). We report that G3BPs reside at the cytoplasmic surface of lysosomes. They act in a non-redundant manner to anchor the tuberous sclerosis complex (TSC) protein complex to lysosomes and suppress activation of the metabolic master regulator mechanistic target of rapamycin complex 1 (mTORC1) by amino acids and insulin. Like the TSC complex, G3BP1 deficiency elicits phenotypes related to mTORC1 hyperactivity. In the context of tumors, low G3BP1 levels enhance mTORC1-driven breast cancer cell motility and correlate with adverse outcomes in patients. Furthermore, G3bp1 inhibition in zebrafish disturbs neuronal development and function, leading to white matter heterotopia and neuronal hyperactivity. Thus, G3BPs are not only core components of SGs but also a key element of lysosomal TSC-mTORC1 signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , DNA Helicases/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais , Esclerose Tuberosa/metabolismo , Sequência de Aminoácidos , Animais , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Grânulos Citoplasmáticos/efeitos dos fármacos , Grânulos Citoplasmáticos/metabolismo , DNA Helicases/química , Evolução Molecular , Feminino , Humanos , Insulina/farmacologia , Proteínas de Membrana Lisossomal/metabolismo , Lisossomos/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fenótipo , Proteínas de Ligação a Poli-ADP-Ribose/química , RNA Helicases/química , Proteínas com Motivo de Reconhecimento de RNA/química , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Peixe-Zebra/metabolismo
4.
Cell Rep ; 31(2): 107504, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32294430

RESUMO

Cell growth is coupled to cell-cycle progression in mitotically proliferating mammalian cells, but the underlying molecular mechanisms are not well understood. CyclinD-Cdk4/6 is known to phosphorylate RB to promote S-phase entry, but recent work suggests they have additional functions. We show here that CyclinD-Cdk4/6 activates mTORC1 by binding and phosphorylating TSC2 on Ser1217 and Ser1452. Pharmacological inhibition of Cdk4/6 leads to a rapid, TSC2-dependent reduction of mTORC1 activity in multiple human and mouse cell lines, including breast cancer cells. By simultaneously driving mTORC1 and E2F, CyclinD-Cdk4/6 couples cell growth to cell-cycle progression. Consistent with this, we see that mTORC1 activity is cell cycle dependent in proliferating neural stem cells of the adult rodent brain. We find that Cdk4/6 inhibition reduces cell proliferation partly via TSC2 and mTORC1. This is of clinical relevance, because Cdk4/6 inhibitors are used for breast cancer therapy.


Assuntos
Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Aminopiridinas/farmacologia , Animais , Benzimidazóis/farmacologia , Neoplasias da Mama/metabolismo , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/fisiologia , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Ciclina D/metabolismo , Ciclina D/fisiologia , Quinase 4 Dependente de Ciclina/fisiologia , Quinase 6 Dependente de Ciclina/fisiologia , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/fisiologia , Camundongos , Fosforilação , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo
5.
J Cell Biol ; 218(7): 2350-2369, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31201267

RESUMO

Small GTPases of the Rho and Ras families are important regulators of Schwann cell biology. The Ras-like GTPases RalA and RalB act downstream of Ras in malignant peripheral nerve sheath tumors. However, the physiological role of Ral proteins in Schwann cell development is unknown. Using transgenic mice with ablation of one or both Ral genes, we report that Ral GTPases are crucial for axonal radial sorting. While lack of only one Ral GTPase was dispensable for early peripheral nerve development, ablation of both RalA and RalB resulted in persistent radial sorting defects, associated with hallmarks of deficits in Schwann cell process formation and maintenance. In agreement, ex vivo-cultured Ral-deficient Schwann cells were impaired in process extension and the formation of lamellipodia. Our data indicate further that RalA contributes to Schwann cell process extensions through the exocyst complex, a known effector of Ral GTPases, consistent with an exocyst-mediated function of Ral GTPases in Schwann cells.


Assuntos
Sistema Nervoso Periférico/crescimento & desenvolvimento , Células de Schwann/metabolismo , Proteínas ral de Ligação ao GTP/genética , Animais , Axônios/metabolismo , Movimento Celular/genética , Células Cultivadas , Exocitose/genética , GTP Fosfo-Hidrolases/genética , Humanos , Camundongos , Camundongos Transgênicos , Sistema Nervoso Periférico/metabolismo , Transdução de Sinais/genética
7.
J Neurosci ; 38(20): 4811-4828, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29695414

RESUMO

Schwann cells (SCs) are endowed with a remarkable plasticity. When peripheral nerves are injured, SCs dedifferentiate and acquire new functions to coordinate nerve repair as so-called repair SCs. Subsequently, SCs redifferentiate to remyelinate regenerated axons. Given the similarities between SC dedifferentiation/redifferentiation in injured nerves and in demyelinating neuropathies, elucidating the signals involved in SC plasticity after nerve injury has potentially wider implications. c-Jun has emerged as a key transcription factor regulating SC dedifferentiation and the acquisition of repair SC features. However, the upstream pathways that control c-Jun activity after nerve injury are largely unknown. We report that the mTORC1 pathway is transiently but robustly reactivated in dedifferentiating SCs. By inducible genetic deletion of the functionally crucial mTORC1-subunit Raptor in mouse SCs (including male and female animals), we found that mTORC1 reactivation is necessary for proper myelin clearance, SC dedifferentiation, and consequently remyelination, without major alterations in the inflammatory response. In the absence of mTORC1 signaling, c-Jun failed to be upregulated correctly. Accordingly, a c-Jun binding motif was found to be enriched in promoters of genes with reduced expression in injured mutants. Furthermore, using cultured SCs, we found that mTORC1 is involved in c-Jun regulation by promoting its translation, possibly via the eIF4F-subunit eIF4A. These results provide evidence that proper c-Jun elevation after nerve injury involves also mTORC1-dependent post-transcriptional regulation to ensure timely dedifferentiation of SCs.SIGNIFICANCE STATEMENT A crucial evolutionary acquisition of vertebrates is the envelopment of axons in myelin sheaths produced by oligodendrocytes in the CNS and Schwann cells (SCs) in the PNS. When myelin is damaged, conduction of action potentials along axons slows down or is blocked, leading to debilitating diseases. Unlike oligodendrocytes, SCs have a high regenerative potential, granted by their remarkable plasticity. Thus, understanding the mechanisms underlying SC plasticity may uncover new therapeutic targets in nerve regeneration and demyelinating diseases. Our work reveals that reactivation of the mTORC1 pathway in SCs is essential for efficient SC dedifferentiation after nerve injury. Accordingly, modulating this signaling pathway might be of therapeutic relevance in peripheral nerve injury and other diseases.


Assuntos
Desdiferenciação Celular , Traumatismos dos Nervos Periféricos/genética , Traumatismos dos Nervos Periféricos/metabolismo , Proteínas Proto-Oncogênicas c-jun/biossíntese , Células de Schwann , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Ativação Metabólica/genética , Ativação Metabólica/fisiologia , Animais , Fator de Iniciação 4F em Eucariotos/genética , Feminino , Sistema de Sinalização das MAP Quinases/genética , Masculino , Camundongos , Camundongos Knockout , Mutação/genética , Bainha de Mielina/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Ratos , Ratos Sprague-Dawley , Proteína Regulatória Associada a mTOR/genética , Transdução de Sinais/fisiologia
8.
Elife ; 62017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28880149

RESUMO

Myelination is a biosynthetically demanding process in which mTORC1, the gatekeeper of anabolism, occupies a privileged regulatory position. We have shown previously that loss of mTORC1 function in Schwann cells (SCs) hampers myelination. Here, we genetically disrupted key inhibitory components upstream of mTORC1, TSC1 or PTEN, in mouse SC development, adult homeostasis, and nerve injury. Surprisingly, the resulting mTORC1 hyperactivity led to markedly delayed onset of both developmental myelination and remyelination after injury. However, if mTORC1 was hyperactivated after myelination onset, radial hypermyelination was observed. At early developmental stages, physiologically high PI3K-Akt-mTORC1 signaling suppresses expression of Krox20 (Egr2), the master regulator of PNS myelination. This effect is mediated by S6K and contributes to control mechanisms that keep SCs in a not-fully differentiated state to ensure proper timing of myelination initiation. An ensuing decline in mTORC1 activity is crucial to allow myelination to start, while remaining mTORC1 activity drives myelin growth.


Assuntos
Bainha de Mielina/metabolismo , Sistema Nervoso Periférico/citologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Animais , Diferenciação Celular , Células Cultivadas , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , PTEN Fosfo-Hidrolase/metabolismo , Sistema Nervoso Periférico/metabolismo , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , Células de Schwann/metabolismo , Proteína 1 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/metabolismo
9.
J Med Chem ; 56(6): 2676-89, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23458498

RESUMO

New fluorinated, arylsulfone-based matrix metalloproteinase (MMP) inhibitors containing carboxylate as the zinc binding group were synthesized as radiotracers for positron emission tomography. Inhibitors were characterized by Ki for MMP-2 in the nanomolar range and by a fair selectivity for MMP-2/9/12/13 over MMP-1/3/14. Two of these compounds were obtained in the (18)F-radiolabeled form, with radiochemical purity and yield suitable for preliminary studies in mice xenografted with a human U-87 MG glioblastoma. Target density in xenografts was assessed by Western blot, yielding Bmax/Kd = 14. The biodistribution of the tracer was dominated by liver uptake and hepatobiliary clearance. Tumor uptake of (18)F-labeled MMP inhibitors was about 30% that of [(18)F]fluorodeoxyglucose. Accumulation of radioactivity within the tumor periphery colocalized with MMP-2 activity (evaluated by in situ zimography). However, specific tumor uptake accounted for only 18% of total uptake. The aspecific uptake was ascribed to the high binding affinity between the radiotracer and serum albumin.


Assuntos
Radioisótopos de Flúor , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Metaloproteinases da Matriz/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Sulfonas/química , Animais , Transporte Biológico , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Técnicas de Química Sintética , Humanos , Camundongos , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , Traçadores Radioativos , Radioquímica , Albumina Sérica/metabolismo , Sulfonas/metabolismo , Sulfonas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA