Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 281: 29-41, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29753957

RESUMO

Magnetic Resonance Image-guided Focused Ultrasound (MRgFUS) has been used to achieve transient blood brain barrier (BBB) opening without tissue injury. Delivery of a targeted ultrasonic wave causes an interaction between administered microbubbles and the capillary bed resulting in enhanced vessel permeability. The use of MRgFUS in the brainstem has not previously been shown but could provide value in the treatment of tumours such as Diffuse Intrinsic Pontine Glioma (DIPG) where the intact BBB has contributed to the limited success of chemotherapy. Our primary objective was to determine whether the use of MRgFUS in this eloquent brain region could be performed without histological injury and functional deficits. Our secondary objective was to select an effective chemotherapeutic against patient derived DIPG cell lines and demonstrate enhanced brainstem delivery when combined with MRgFUS in vivo. Female Sprague Dawley rats were randomised to one of four groups: 1) Microbubble administration but no MRgFUS treatment; 2) MRgFUS only; 3) MRgFUS + microbubbles; and 4) MRgFUS + microbubbles + cisplatin. Physiological assessment was performed by monitoring of heart and respiratory rates. Motor function and co-ordination were evaluated by Rotarod and grip strength testing. Histological analysis for haemorrhage (H&E), neuronal nuclei (NeuN) and apoptosis (cleaved Caspase-3) was also performed. A drug screen of eight chemotherapy agents was conducted in three patient-derived DIPG cell lines (SU-DIPG IV, SU-DIPG XIII and SU-DIPG XVII). Doxorubicin was identified as an effective agent. NOD/SCID/GAMMA (NSG) mice were subsequently administered with 5 mg/kg of intravenous doxorubicin at the time of one of the following: 1) Microbubbles but no MRgFUS; 2) MRgFUS only; 3) MRgFUS + microbubbles and 4) no intervention. Brain specimens were extracted at 2 h and doxorubicin quantification was conducted using liquid chromatography mass spectrometry (LC/MS). BBB opening was confirmed by contrast enhancement on T1-weighted MR imaging and positive Evans blue staining of the brainstem. Normal cardiorespiratory parameters were preserved. Grip strength and Rotarod testing demonstrating no decline in performance across all groups. Histological analysis showed no evidence of haemorrhage, neuronal loss or increased apoptosis. Doxorubicin demonstrated cytotoxicity against all three cell lines and is known to have poor BBB permeability. Quantities measured in the brainstem of NSG mice were highest in the group receiving MRgFUS and microbubbles (431.5 ng/g). This was significantly higher than in mice who received no intervention (7.6 ng/g). Our data demonstrates both the preservation of histological and functional integrity of the brainstem following MRgFUS for BBB opening and the ability to significantly enhance drug delivery to the region, giving promise to the treatment of brainstem-specific conditions.


Assuntos
Antineoplásicos/administração & dosagem , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Doxorrubicina/administração & dosagem , Glioma/tratamento farmacológico , Ondas Ultrassônicas , Animais , Antineoplásicos/uso terapêutico , Encéfalo/metabolismo , Tronco Encefálico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Doxorrubicina/uso terapêutico , Portadores de Fármacos , Liberação Controlada de Fármacos , Feminino , Camundongos SCID , Microbolhas , Permeabilidade , Ratos Sprague-Dawley , Distribuição Tecidual
2.
Nanomedicine ; 14(4): 1137-1148, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29471172

RESUMO

Glioblastoma (GBM) is the most common and aggressive primary brain tumor resulting in high rates of morbidity and mortality. A strategy to increase the efficacy of available drugs and enhance the delivery of chemotherapeutics through the blood brain barrier (BBB) is desperately needed. We investigated the potential of Cisplatin conjugated gold nanoparticle (GNP-UP-Cis) in combination with MR-guided Focused Ultrasound (MRgFUS) to intensify GBM treatment. Viability assays demonstrated that GNP-UP-Cis greatly inhibits the growth of GBM cells compared to free cisplatin and shows marked synergy with radiation therapy. Additionally, increased DNA damage through γH2AX phosphorylation was observed in GNP-UP-Cis treated cells, along with enhanced platinum concentrations. In vivo, GNP-UP-Cis greatly reduced the growth of GBM tumors and MRgFUS led to increased BBB permeability and GNP-drug delivery in brain tissue. Our studies suggest that GNP-Cis conjugates and MRgFUS can be used to focally enhance the delivery of targeted chemotherapeutics to brain tumors.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Cisplatino/uso terapêutico , Glioblastoma/tratamento farmacológico , Ouro/química , Nanopartículas Metálicas/química , Ondas Ultrassônicas , Animais , Barreira Hematoencefálica , Neoplasias Encefálicas/metabolismo , Cisplatino/administração & dosagem , Cisplatino/química , Cisplatino/metabolismo , Sistemas de Liberação de Medicamentos , Feminino , Humanos , Imuno-Histoquímica , Imageamento por Ressonância Magnética , Camundongos , Camundongos SCID , Microscopia Confocal
3.
Oncotarget ; 7(35): 56958-56975, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27486972

RESUMO

Cdc42 is a Rho-GTPase which plays a major role in regulating cell polarity and migration by specifying the localization of filopodia. However, the role of Cdc42 in GBM invasion has not been thoroughly investigated. We generated stable doxycycline-inducible clones expressing wild type (WT)-, constitutively active (CA)-, and dominant negative (DN)-Cdc42 in three different human glioma cell lines. Expression of CA-Cdc42 significantly increased the migration and invasive properties of malignant glioma cells compared to WT and DN-Cdc42 cell clones, and this was accompanied by a greater number of filopodia and focal adhesion structures which co-localize with phosphorylated focal adhesion kinase (FAK). By mass spectrometry and immunoprecipitation studies, we demonstrated that activated Cdc42 binds to IQGAP1. When implanted orthotopically in mice, the CA-Cdc42 expressing glioma cells exhibited enhanced local migration and invasion, and led to larger tumors, which significantly reduced survival. Using the Cancer Genome Atlas dataset, we determined that high Cdc42 expression is associated with poorer progression free survival, and that Cdc42 expression is highest in the proneural and neural subgroups of GBM. In summary, our studies demonstrate that activated Cdc42 is a critical determinant of the migratory and invasive phenotype of malignant gliomas, and that its effect may be mediated, at least in part, through its interaction with IQGAP1 and phosphorylated FAK.


Assuntos
Glioblastoma/metabolismo , Invasividade Neoplásica , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Sobrevivência Celular , Progressão da Doença , Intervalo Livre de Doença , Doxiciclina/química , Quinase 1 de Adesão Focal/metabolismo , Regulação Neoplásica da Expressão Gênica , Genes Dominantes , Glioblastoma/patologia , Glioma/metabolismo , Glioma/patologia , Humanos , Camundongos , Transplante de Neoplasias , Fenótipo , Fosforilação , Pseudópodes/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas Ativadoras de ras GTPase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA