Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Int J Mol Sci ; 25(9)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38732269

RESUMO

New antimicrobial molecules effective against Pseudomonas aeruginosa, known as an antibiotic-resistant "high-priority pathogen", are urgently required because of its ability to develop biofilms related to healthcare-acquired infections. In this study, for the first time, the anti-biofilm and anti-virulence activities of a polyphenolic extract of extra-virgin olive oil as well as purified oleocanthal and oleacein, toward P. aeruginosa clinical isolates were investigated. The main result of our study was the anti-virulence activity of the mixture of oleacein and oleocanthal toward multidrug-resistant and intermediately resistant strains of P. aeruginosa isolated from patients with ventilator-associated pneumonia or surgical site infection. Specifically, the mixture of oleacein (2.5 mM)/oleocanthal (2.5 mM) significantly inhibited biofilm formation, alginate and pyocyanin production, and motility in both P. aeruginosa strains (p < 0.05); scanning electron microscopy analysis further evidenced its ability to inhibit bacterial cell adhesion as well as the production of the extracellular matrix. In conclusion, our results suggest the potential application of the oleacein/oleocanthal mixture in the management of healthcare-associated P. aeruginosa infections, particularly in the era of increasing antimicrobial resistance.


Assuntos
Aldeídos , Antibacterianos , Biofilmes , Monoterpenos Ciclopentânicos , Azeite de Oliva , Fenóis , Pseudomonas aeruginosa , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Pseudomonas aeruginosa/efeitos dos fármacos , Azeite de Oliva/química , Azeite de Oliva/farmacologia , Fenóis/farmacologia , Fenóis/química , Aldeídos/farmacologia , Aldeídos/química , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Testes de Sensibilidade Microbiana , Infecções por Pseudomonas/tratamento farmacológico , Infecções por Pseudomonas/microbiologia , Aderência Bacteriana/efeitos dos fármacos
2.
Pharmacol Ther ; 254: 108595, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38301769

RESUMO

Over the years, health challenges have become increasingly complex and global and, at the beginning of the 21st century, chronic diseases, including cardiovascular, neurological, and chronic respiratory diseases, as well as cancer and diabetes, have been identified by World Health Organization as one of the biggest threats to human health. Recently, antimicrobial resistance has also emerged as a growing problem of public health for the management of infectious diseases. In this scenario, the exploration of natural products as supplementation or alternative therapeutic options is acquiring great importance, and, among them, the olive tree, Olea europaea L, specifically leaves, fruits, and oil, has been increasingly investigated for its health promoting properties. Traditionally, these properties have been largely attributed to the high concentration of monounsaturated fatty acids, although, in recent years, beneficial effects have also been associated to other components, particularly polyphenols. Among them, the most interesting group is represented by Olea europaea L secoiridoids, comprising oleuropein, oleocanthal, oleacein, and ligstroside, which display anti-inflammatory, antioxidant, cardioprotective, neuroprotective and anticancer activities. This review provides an overview of the multiple health beneficial effects, the molecular mechanisms, and the potential applications of secoiridoids from Olea europaea L.


Assuntos
Neoplasias , Olea , Humanos , Iridoides/farmacologia , Iridoides/uso terapêutico , Polifenóis , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Neoplasias/tratamento farmacológico
3.
Int J Mol Sci ; 25(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38339156

RESUMO

Antimicrobial resistance is an urgent global public health threat, as approximately 700,000 deaths annually can be attributed to antibiotic-resistant bacterial infections, and this figure is expected to reach 10 million deaths/year by 2050, a number that greatly exceeds the number of deaths resulting from cancer [...].


Assuntos
Antibacterianos , Bactérias , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
4.
Int J Mol Sci ; 24(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37628881

RESUMO

In recent decades, antibiotic misuse has emerged as an important risk factor for the appearance of multi-drug-resistant bacteria, and, recently, antimicrobial resistance has also been described in Chlamydia trachomatis as the leading cause of bacterial sexually transmitted diseases worldwide. Herein, we investigated, for the first time, the antibacterial activity against C. trachomatis of a polyphenolic extract of extra virgin olive oil (EVOO), alongside purified oleocanthal and oleacein, two of its main components, in natural deep eutectic solvent (NaDES), a biocompatible solvent. The anti-chlamydial activity of olive-oil polyphenols (OOPs) was tested in the different phases of chlamydial developmental cycle by using an in vitro infection model. Transmission and scanning electron microscopy analysis were performed for investigating potential alterations of adhesion and invasion, as well as morphology, of chlamydial elementary bodies (EBs) to host cells. The main result of our study is the anti-bacterial activity of OOPs towards C. trachomatis EBs down to a total polyphenol concentration of 1.7 µg/mL, as shown by a statistically significant decrease (93.53%) of the total number of chlamydial-inclusion-forming units (p < 0.0001). Transmission and scanning electron microscopy analysis supported its anti-chlamydial effect, suggesting that OOP might damage the chlamydial outer layers, impairing their structural integrity and hindering EB capability to infect the host cell. In conclusion, OOPs may represent an interesting alternative therapeutic option toward C. trachomatis, although further studies are necessary for exploring its clinical applications.


Assuntos
Chlamydia trachomatis , Polifenóis , Azeite de Oliva , Antibacterianos/farmacologia , Carbono
5.
Adv Exp Med Biol ; 1370: 125-144, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36971966

RESUMO

Studies analyzing the relationship between microbiota composition and the thyroid have been increasing rapidly in recent years, and evidence has recently come to light about the involvement of the gut microbiota in various aspects of thyroid pathology. Recently, besides studies analyzing the microbiota composition of different biological niches (salivary microbiota or thyroid tumor microenvironment) in patients with thyroid disorders, some studies have been carried out in peculiar subcategories of patients (pregnant women or obese). Other studies added a metabolomic insight into the characterization of fecal microflora in an attempt to enlighten specific metabolic pathways that could be involved in thyroid disorder pathogenesis. Lastly, some studies described the use of probiotics or symbiotic supplementation aimed at modulating gut microbiota composition for therapeutic purposes. The aim of this systematic review is to analyze the last advancements in the relationship between gut microbiota composition and thyroid autoimmunity, extending the analysis also to nonautoimmune thyroid disorders as well as to the characterization of the microbiota belonging to different biological niches in these patients. The overall results of the present review article strengthen the existence of a bidirectional relationship between the intestine, with its microbial set, and thyroid homeostasis, thus supporting the newly recognized entity known as the gut-thyroid axis.


Assuntos
Doença de Graves , Doença de Hashimoto , Microbiota , Doenças da Glândula Tireoide , Neoplasias da Glândula Tireoide , Gravidez , Humanos , Feminino , Microambiente Tumoral
6.
Front Pharmacol ; 13: 885735, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548334

RESUMO

Extra virgin olive oil (EVOO) from Olea europaea L. drupes, a cornerstone in the Mediterranean diet, is well known for its nutritional and health properties, especially for prevention of cardiovascular diseases and metabolic disorders. Traditionally, beneficial health effects have been largely attributed to the high concentration of monounsaturated fatty acids, and in recent years, these have also been related to other components including oleacein and oleocanthal. Here, we evaluated, for the first time, the antimicrobial activity of different green extra virgin olive oil-based formulations in natural deep eutectic solvents (NaDESs) emerging as powerful and biocompatible solvents. Specifically, the antimicrobial activity of the EVOO extract, as well as purified oleocanthal and oleacein in two NaDESs (choline/glycerol and choline/propylene glycol), against several drug-resistant clinical isolates and standard microbial strains has been evaluated. The main result was the inhibitory activity of the EVOO extract in choline/glycerol as well as oleacein in choline/propylene glycol toward drug-resistant Gram-positive and -negative strains. Specifically, the EVOO extract in choline/glycerol showed the highest antibacterial activity against several clinical strains of Staphylococcus aureus, whereas oleacein in choline/propylene glycol was the most effective toward various clinical strains of Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae. In addition, all the formulations tested were effective against Candida spp. In conclusion, our results suggest EVOO-based formulations in NaDESs as an interesting strategy that may help in reducing the risk of development of drug resistance. Under this perspective, the usage of NaDESs for the preparation of new antimicrobial formulations may represent a promising approach.

7.
Front Cell Infect Microbiol ; 12: 840802, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35174109

RESUMO

Chlamydia trachomatis is an obligate, intracellular bacterium responsible for a range of diseases of public health importance, since C. trachomatis infection is often asymptomatic and, hence, untreated, leading to chronic complications, including prostatitis, infertility, and reactive arthritis. The ample spectrum of diseases caused by C. trachomatis infection is reflected in its ability to infect and multiply within a wide range of different cell types. Cervical epithelial cells, to date, have been the most studied cellular infection model, highlighting the peculiar features of the host-cell inflammatory and immune responses to the infection. Herein, we provide the up-to-date evidence on the interaction between C. trachomatis and human prostate epithelial, Sertoli and synovial cells.


Assuntos
Artrite Reativa , Infecções por Chlamydia , Infertilidade Masculina , Artrite Reativa/etiologia , Infecções por Chlamydia/microbiologia , Chlamydia trachomatis/fisiologia , Células Epiteliais/microbiologia , Humanos , Infertilidade Masculina/complicações , Masculino
8.
Nutrients ; 12(2)2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32075195

RESUMO

Celiac disease (CD) is an autoimmune enteropathy caused by an intolerance to gluten proteins. It has been hypothesized that probiotic bacteria may exert beneficial effects by modulating inflammatory processes and by sustaining peptide hydrolysis at the intestinal level. This study aims at evaluating the capacity of a probiotic mixture (two different strains of lactobacilli and three of bifidobacteria) to hydrolyze gluten peptides following simulated gastrointestinal digestion of gliadin (PT-gliadin). The capacity of bacterial hydrolysates to counteract the toxic effects of gliadin-derived peptides in Caco-2 cells was also assessed. The protein and peptide mixtures, untreated or proteolyzed with the probiotic preparation, were analyzed before and after each proteolytic step with different techniques (SDS-PAGE, reverse phase HPLC, filtration on different molecular cut-off membranes). These experiments demonstrated that PT-gliadin can be further digested by bacteria into lower molecular weight peptides. PT-gliadin, untreated or digested with the probiotics, was then used to evaluate oxidative stress, IL-6 cytokine production and expression of tight junctions' proteins-such as occludin and zonulin-in Caco-2 cells. PT-gliadin induced IL-6 production and modulation and redistribution of zonulin and occludin, while digestion with the probiotic strains reversed these effects. Our data indicate that this probiotic mixture may exert a protective role in CD.


Assuntos
Bifidobacterium , Gliadina/metabolismo , Gliadina/toxicidade , Lactobacillus , Probióticos/farmacologia , Hidrolisados de Proteína/farmacologia , Bifidobacterium/metabolismo , Células CACO-2 , Doença Celíaca/prevenção & controle , Doença Celíaca/terapia , Haptoglobinas/metabolismo , Humanos , Hidrólise , Interleucina-6/metabolismo , Lactobacillus/metabolismo , Peso Molecular , Ocludina/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Probióticos/uso terapêutico , Precursores de Proteínas/metabolismo , Proteólise
9.
New Microbiol ; 41(1): 34-41, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29313867

RESUMO

HPV and Chlamydia trachomatis are the most common causes of sexually transmitted diseases worldwide. Most infections are asymptomatic and left untreated lead to severe reproductive tract sequelae such as cervical cancer and infertility. Interestingly, C. trachomatis may also increase the susceptibility to HPV infection as well as contribute to viral persistence. Recently, a growing body of evidence has suggested that the composition of the cervico-vaginal microbiota plays a key role in the susceptibility and outcome of genital infections caused by several pathogens, including HPV and C. trachomatis. The aim of our study was to undertake a metagenomic analysis of sequenced 16s rRNA gene amplicons to characterize the cervical microbiota from asymptomatic women with HPV/C. trachomatis co-infection. The composition of the cervical microbiota from HPV-positive or C. trachomatis-positive women was also analysed. The main finding of our study showed that the cervical microbiota in HPV/C. trachomatis co-infected women had a higher microbial diversity than the cervical microbiota in healthy controls (p<0.05). In addition, Aerococcus christensenii was associated with C. trachomatis infection. In conclusion, the increased cervical microbial diversity observed in HPV/C. trachomatis co-infected women and the detection of potential microbiological biomarkers of C. trachomatis infection will open the way to innovative approaches that may be helpful to identify women at risk of co-infection.


Assuntos
Infecções por Chlamydia/complicações , Chlamydia trachomatis , Coinfecção , Papillomaviridae , Infecções por Papillomavirus/complicações , Doenças do Colo do Útero/microbiologia , Adulto , Infecções por Chlamydia/microbiologia , Feminino , Humanos , Infecções por Papillomavirus/virologia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Doenças do Colo do Útero/patologia
10.
Pathog Dis ; 75(5)2017 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-28505248

RESUMO

In the cervicovaginal microenvironment, lactobacilli are known to protect against genital infections and, amongst the host defence compounds, lactoferrin has recently acquired importance for its anti-microbial and anti-inflammatory properties. An abnormal genital microenvironment facilitates the acquisition of pathogens like Chlamydia trachomatis, the leading cause of bacterial sexually transmitted infections worldwide. The aim of our study is to investigate the effects of Lactobacillus crispatus, Lactobacillus brevis and bovine lactoferrin on chlamydial infection, in order to shed light on the complex interplay between host defence mechanisms and C. trachomatis. We have also evaluated the effect of these defence factors to modulate the chlamydia-mediated inflammatory state. To this purpose, we have determined the infectivity and progeny production of C. trachomatis as well as interleukin-8 and interleukin-6 synthesis. The main result of our study is that the combination of L. brevis and bovine lactoferrin is the most effective in inhibiting the early phases (adhesion and invasion) of C. trachomatis infection of cervical epithelial cells and in decreasing the levels of both cytokines. In conclusion, the interaction between L. brevis and lactoferrin seems to play a role in the protection against C. trachomatis, reducing the infection and regulating the immunomodulatory activity, thus decreasing the risk of severe complications.


Assuntos
Anti-Infecciosos/metabolismo , Antibiose , Chlamydia trachomatis/fisiologia , Células Epiteliais/microbiologia , Interações Hospedeiro-Patógeno , Lactoferrina/metabolismo , Levilactobacillus brevis/crescimento & desenvolvimento , Animais , Aderência Bacteriana , Bovinos , Endocitose , Células HeLa , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Lactobacillus crispatus/crescimento & desenvolvimento
11.
Artigo em Inglês | MEDLINE | ID: mdl-26636048

RESUMO

Chlamydia pneumoniae has been associated to atherosclerotic cardiovascular diseases. The aim of our study was to characterize, for the first time, a C. pneumoniae strain isolated from the gingival crevicular fluid of a patient with chronic periodontitis, described as a risk factor for cardiovascular diseases. C. pneumoniae isolate was characterized and compared to the respiratory AR-39 strain by VD4-ompA genotyping and by investigating the intracellular growth in epithelial and macrophage cell lines and its ability to induce macrophage-derived foam cells. Inflammatory cytokine levels were determined in the gingival crevicular fluid sample. C. pneumoniae isolate showed a 99% similarity with the AR-39 strain in the VD4-ompA gene sequence and shared a comparable growth kinetic in epithelial cells and macrophages, as evidenced by the infectious progeny and by the number of chlamydial genomic copies. C. pneumoniae isolate significantly increased the number of foam cells as compared to uninfected and LDL-treated macrophages (45 vs. 6%, P = 0.0065) and to the AR-39 strain (45 vs. 30%, P = 0.0065). Significantly increased levels of interleukin 1-ß (2.1 ± 0.3 pg/µL) and interleukin 6 (0.6 ± 0.08 pg/µL) were found. Our results suggest that C. pneumoniae may harbor inside oral cavity and potentially be atherogenic, even though further studies will be needed to clarify the involvement of C. pneumoniae in chronic periodontitis as a risk factor for cardiovascular diseases.


Assuntos
Aterosclerose/microbiologia , Chlamydophila pneumoniae/isolamento & purificação , Chlamydophila pneumoniae/fisiologia , Periodontite Crônica/microbiologia , Líquido do Sulco Gengival/microbiologia , Animais , Linhagem Celular , Chlamydophila pneumoniae/classificação , Chlamydophila pneumoniae/genética , Citocinas/análise , DNA Bacteriano/química , DNA Bacteriano/genética , Células Epiteliais/microbiologia , Genótipo , Líquido do Sulco Gengival/química , Humanos , Macrófagos/microbiologia , Camundongos , Análise de Sequência de DNA
12.
Mediators Inflamm ; 2015: 378658, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26346892

RESUMO

Several studies have attempted to relate the C. pneumoniae-mediated inflammatory state with atherosclerotic cardiovascular diseases, providing inconsistent results. Therefore, we performed a meta-analysis to clarify whether C. pneumoniae may contribute to the pathogenesis of atherosclerosis by enhancing inflammation. 12 case-control, 6 cross-sectional, and 7 prospective studies with a total of 10,176 patients have been included in this meta-analysis. Odds Ratio (OR) with a 95% confidence interval was used to assess the seroprevalence of C. pneumoniae and differences between levels of inflammatory markers were assessed by standard mean differences. Publication bias was performed to ensure the statistical power. hsCRP, fibrinogen, interleukin- (IL-) 6, TNF-α, and IFN-γ showed a significant increase in patients with atherosclerosis compared to healthy controls (P < 0.05), along with a higher seroprevalence of C. pneumoniae (OR of 3.11, 95% CI: 2.88-3.36, P < 0.001). More interestingly, hsCRP, IL-6, and fibrinogen levels were significantly higher in C. pneumoniae IgA seropositive compared to seronegative atherosclerotic patients (P < 0.0001). In conclusion, the present meta-analysis suggests that C. pneumoniae infection may contribute to atherosclerotic cardiovascular diseases by enhancing the inflammatory state, and, in particular, seropositivity to C. pneumoniae IgA, together with hsCRP, fibrinogen, and IL-6, may be predictive of atherosclerotic cardiovascular risk.


Assuntos
Aterosclerose/etiologia , Infecções por Chlamydophila/complicações , Inflamação/etiologia , Animais , Aterosclerose/imunologia , Aterosclerose/metabolismo , Proteína C-Reativa/metabolismo , Infecções por Chlamydophila/imunologia , Infecções por Chlamydophila/metabolismo , Chlamydophila pneumoniae , Fibrinogênio/metabolismo , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Interleucina-6/metabolismo
13.
Biomed Res Int ; 2015: 508071, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25685793

RESUMO

Chlamydia trachomatis, the most common cause of sexually transmitted bacterial infection worldwide, has a unique biphasic developmental cycle alternating between the infectious elementary body and the replicative reticulate body. C. trachomatis is responsible for severe reproductive complications including pelvic inflammatory disease, ectopic pregnancy, and obstructive infertility. The aim of our study was to evaluate whether Mentha suaveolens essential oil (EOMS) can be considered as a promising candidate for preventing C. trachomatis infection. Specifically, we investigated the in vitro effects of EOMS towards C. trachomatis analysing the different phases of chlamydial developmental cycle. Our results demonstrated that EOMS was effective towards C. trachomatis, whereby it not only inactivated infectious elementary bodies but also inhibited chlamydial replication. Our study also revealed the effectiveness of EOMS, in combination with erythromycin, towards C. trachomatis with a substantial reduction in the minimum effect dose of antibiotic. In conclusion, EOMS treatment may represent a preventative strategy since it may reduce C. trachomatis transmission in the population and, thereby, reduce the number of new chlamydial infections and risk of developing of severe sequelae.


Assuntos
Antibacterianos/farmacologia , Chlamydia trachomatis/crescimento & desenvolvimento , Mentha/química , Óleos Voláteis/farmacologia , Antibacterianos/química , Infecções por Chlamydia/tratamento farmacológico , Eritromicina/química , Eritromicina/farmacologia , Feminino , Humanos , Óleos Voláteis/química , Gravidez
14.
Int J Mol Sci ; 16(1): 724-35, 2014 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-25561227

RESUMO

Chlamydia pneumoniae, a pathogenic bacteria responsible for respiratory tract infections, is known as the most implicated infectious agent in atherosclerotic cardiovascular diseases (CVDs). Accumulating evidence suggests that C. pneumoniae-induced oxidative stress may play a critical role in the pathogenesis of CVDs. Indeed, the overproduction of reactive oxygen species (ROS) within macrophages, endothelial cells, platelets and vascular smooth muscle cells (VSMCs) after C. pneumoniae exposure, has been shown to cause low density lipoprotein oxidation, foam cell formation, endothelial dysfunction, platelet adhesion and aggregation, and VSMC proliferation and migration, all responsible for the typical pathological changes of atherosclerotic plaque. The aim of this review is to improve our insight into C. pneumoniae-induced oxidative stress in order to suggest potential strategies for CVD prevention. Several antioxidants, acting on multi-enzymatic targets related to ROS production induced by C. pneumoniae, have been discussed. A future strategy for the prevention of C. pneumoniae-associated CVDs will be to target chlamydial HSP60, involved in oxidative stress.


Assuntos
Doenças Cardiovasculares/prevenção & controle , Chlamydophila pneumoniae/fisiologia , Estresse Oxidativo , Doenças Cardiovasculares/patologia , Células Endoteliais/metabolismo , Humanos , Macrófagos/metabolismo , Chaperonas Moleculares/metabolismo , Músculo Liso Vascular/metabolismo , Espécies Reativas de Oxigênio/metabolismo
15.
Int J Mol Sci ; 14(7): 15105-20, 2013 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-23877837

RESUMO

Chlamydia pneumoniae, an obligate intracellular pathogen, is known as a leading cause of respiratory tract infections and, in the last two decades, has been widely associated with atherosclerosis by seroepidemiological studies, and direct detection of the microorganism within atheroma. C. pneumoniae is presumed to play a role in atherosclerosis for its ability to disseminate via peripheral blood mononuclear cells, to replicate and persist within vascular cells, and for its pro-inflammatory and angiogenic effects. Once inside the vascular tissue, C. pneumoniae infection has been shown to induce the production of reactive oxygen species in all the cells involved in atherosclerotic process such as macrophages, platelets, endothelial cells, and vascular smooth muscle cells, leading to oxidative stress. The aim of this review is to summarize the data linking C. pneumoniae-induced oxidative stress to atherosclerotic lesion development.


Assuntos
Aterosclerose/etiologia , Infecções por Chlamydia/complicações , Chlamydophila pneumoniae/fisiologia , Estresse Oxidativo , Infecções por Chlamydia/metabolismo , Infecções por Chlamydia/microbiologia , Chlamydophila pneumoniae/crescimento & desenvolvimento , Humanos , Macrófagos/imunologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/microbiologia , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA