Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 15(6)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35745665

RESUMO

L-asparaginase is an important enzyme in the pharmaceutical field used as treatment for acute lymphoblastic leukemia due to its ability to hydrolyze L-asparagine, an essential amino acid synthesized by normal cells, but not by neoplastic cells. Adverse effects of L-asparaginase formulations are associated with its glutaminase activity and bacterial origin; therefore, it is important to find new sources of L-asparaginase produced by eukaryotic microorganisms with low glutaminase activity. This work aimed to identify the L-asparaginase gene sequence from Penicillium sizovae, a filamentous fungus isolated from the Brazilian Savanna (Cerrado) soil with low glutaminase activity, and to biosynthesize higher yields of this enzyme in the yeast Komagataella phaffii. The L-asparaginase gene sequence of P. sizovae was identified by homology to L-asparaginases from species of Penicillium of the section Citrina: P. citrinum and P. steckii. Partial L-asparaginase from P. sizovae, lacking the periplasmic signaling sequence, was cloned, and expressed intracellularly with highest enzymatic activity achieved by a MUT+ clone cultured in BMM expression medium; a value 5-fold greater than that obtained by native L-asparaginase in P. sizovae cells. To the best of our knowledge, this is the first literature report of the heterologous production of an L-asparaginase from a filamentous fungus by a yeast.

2.
Pharmaceutics ; 13(8)2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34452229

RESUMO

l-asparaginase is an enzyme used as treatment for acute lymphoblastic leukemia (ALL) due to its ability to hydrolyze l-asparagine, an essential amino acid synthesized by normal cells unlike neoplastic cells. The adverse effects of l-asparaginase formulations are associated with its glutaminase activity and bacterial origin; therefore, it is important to find new sources of l-asparaginase-producing eukaryotic microorganisms with low glutaminase activity. This work evaluated the biotechnological potential of filamentous fungi isolated from Brazilian Savanna soil and plants for l-asparaginase production. Thirty-nine isolates were screened for enzyme production using the plate assay, followed by measuring enzymatic activity in cells after submerged fermentation. The variables influencing l-asparaginase production were evaluated using Plackett-Burman design. Cell disruption methods were evaluated for l-asparaginase release. Penicillium sizovae 2DSST1 and Fusarium proliferatum DCFS10 showed the highest l-asparaginase activity levels and the lowest glutaminase activity levels. Penicillium sizovae l-asparaginase was repressed by carbon sources, whereas higher carbon concentrations enhanced l-asparaginase by F. proliferatum. Maximum enzyme productivity, specific enzyme yield and the biomass conversion factor in the enzyme increased after Plackett-Burman design. Freeze-grinding released 5-fold more l-asparaginase from cells than sonication. This study shows two species, which have not yet been reported, as sources of l-asparaginase with possible reduced immunogenicity for ALL therapy.

3.
Braz J Microbiol ; 51(3): 979-988, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32424715

RESUMO

L-asparaginase has been used in the remission of malignant neoplasms such as acute lymphoblastic leukemia. The search for new sources of this enzyme has become attractive for therapeutics. Traditional methods for biomolecule purification involve several steps. A two-phase system may be a good strategy to anticipate one of these stages. This study aimed to produce and purify a fungal L-asparaginase through an aqueous two-phase micellar system (ATPMS) using Triton X-114. The fungus Penicillium sp.-encoded 2DSST1 was isolated from Cerrado soil. Plackett-Burman design followed by a 24 full factorial design was used to determine the best conditions to produce L-asparaginase. The evaluated variables were L-asparagine, L-proline, wheat bran, potato dextrose broth, ammonium sulfate, yeast extract, sucrose and glucose concentrations, incubation temperature, incubation period, and initial pH of the culture medium. L-asparaginase quantification was valued by the formation of ß-aspartyl hydroxamate. The significant positive variables, L-asparagine, L-proline, potato dextrose broth, and sucrose concentrations, were evaluated at 2 levels (+ 1 and - 1) with triplicate of the central point. After 34 runs, maximum activity (2.33 IU/mL) was achieved at the factorial design central point. A central composite design was performed in ATPMS at two levels (+ 1 and - 1) varying Triton X-114 concentration (w/v), separation phase temperature, and crude extract concentration (w/v). The L-asparaginase partition coefficient (K) was considered the experimental design response. Out of the 16 systems that were examined, the most promising presented a purification factor of 1.4 and a yield of 100%.


Assuntos
Asparaginase/isolamento & purificação , Fibras na Dieta/metabolismo , Micelas , Penicillium/enzimologia , Asparaginase/metabolismo , Biodegradação Ambiental , Meios de Cultura/química , Meios de Cultura/metabolismo , Fibras na Dieta/análise , Fermentação , Extração Líquido-Líquido , Octoxinol/análise , Octoxinol/química , Penicillium/crescimento & desenvolvimento , Penicillium/metabolismo , Temperatura
4.
Biotechnol Appl Biochem ; 62(6): 806-14, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25546578

RESUMO

The partitioning of protease expressed by Penicillium fellutanum from the Brazilian savanna in a novel inexpensive and stable aqueous two-phase system (ATPS) composed of poly(ethylene glycol) (PEG) and sodium polyacrylate (NaPA) was studied in this work using factorial design. The ATPS is formed by mixing both polymers with a salt (NaCl) and fermented broth of P. fellutanum. The effects of molar mass (2,000, 4,000, and 6,000 g ⋅ mol(-1)) and concentration (6, 8, and 10 wt%) of PEG and that of NaPA concentration (6, 8, and 10 wt%) on protease partitioning (K) at 25 °C were studied. A two-level factorial design (2(3)) was implemented. The effect of Na2 SO4 concentration (5, 10, and 15 wt%) on the reextraction of the enzyme was also analyzed. The partition coefficient K ranged from 77.51 to 1.21, indicating the versatility of the method. The reextraction was achieved with the addition of 5% Na2 SO4 , allowing the partitioning of the protease to the upper phase, whereas total proteins were directed to the bottom phase. The results of partitioning using the PEG/NaPA/NaCl system and that of the subsequent reextraction with Na2 SO4 suggest that this method can be used to purify proteases from fermented broth of P. fellutanum.


Assuntos
Resinas Acrílicas/química , Fracionamento Químico/métodos , Pradaria , Penicillium/genética , Peptídeo Hidrolases/isolamento & purificação , Polietilenoglicóis/química , Cloreto de Sódio/química , Expressão Gênica , Peptídeo Hidrolases/genética , Água/química
5.
Braz. j. microbiol ; 33(2): 169-173, Apr.-Jun. 2002. ilus
Artigo em Inglês | LILACS | ID: lil-330266

RESUMO

The effect of G protein modulators and cyclic AMP (cAMP) on N-acetylglucosaminidase (NAGase) production was investigated during 84 h of growth of a Trichoderma harzianum strain in chitin-containing medium. Caffeine (5 mM), N6¾2'-O-dibutyryladenosine 3'5'-cyclic monophosphate sodium salt (dBcAMP) (1 mM) and 3-isobutyl-1-methylxanthine (IBMX) (2 mM) decreased extracellular NAGase activity by 80(per cent), 77(per cent) and 37(per cent), respectively. AlCl3/KF (100 µM/10 mM and 200 µM/ 20 mM) decreased the activity by 85(per cent)and 95(per cent), respectively. Cholera (10 µ/mL) and pertussis (20 µ/mL) toxins also affected NAGase activity, causing a decrease of approximately 75(per cent). Upon all treatments, protein bands of approximately 73 kDa, 68 kDa and 45 kDa had their signals diminished whilst a 50 kDa band was enhanced only by treatment with cholera and pertussis toxins. N-terminal sequencing analysis identified the 73 kDa and 68 kDa proteins as being T. harzianum NAGase in two different truncated forms whereas the 45 kDa band comprised a T. harzianum endochitinase. The 50 kDa protein showed sequence similarity to Coriolus vesicolor cellobiohydrolase. The above results suggest that a signaling pathway comprising G-proteins, adenylate cyclase and cAMP may be involved in the synthesis of T. harzianum chitinases.


Assuntos
Quitinases , Enzimas , Técnicas In Vitro , Proteínas de Ligação ao GTP , Proteínas de Ligação ao GTP/análise , Trichoderma , Métodos , Produção de Produtos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA