Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nature ; 569(7756): 345-354, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31092938

RESUMO

How cells adopt different identities has long fascinated biologists. Signal transduction in response to environmental cues results in the activation of transcription factors that determine the gene-expression program characteristic of each cell type. Technological advances in the study of 3D chromatin folding are bringing the role of genome conformation in transcriptional regulation to the fore. Characterizing this role of genome architecture has profound implications, not only for differentiation and development but also for diseases including developmental malformations and cancer. Here we review recent studies indicating that the interplay between transcription and genome conformation is a driving force for cell-fate decisions.


Assuntos
Diferenciação Celular/genética , Células/citologia , Células/metabolismo , Genoma , Fatores de Transcrição/metabolismo , Animais , Montagem e Desmontagem da Cromatina/genética , Posicionamento Cromossômico , Regulação da Expressão Gênica , Genoma/genética , Humanos , Especificidade de Órgãos/genética
2.
Nucleic Acids Res ; 46(8): e49, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29394371

RESUMO

The three-dimensional conformation of genomes is an essential component of their biological activity. The advent of the Hi-C technology enabled an unprecedented progress in our understanding of genome structures. However, Hi-C is subject to systematic biases that can compromise downstream analyses. Several strategies have been proposed to remove those biases, but the issue of abnormal karyotypes received little attention. Many experiments are performed in cancer cell lines, which typically harbor large-scale copy number variations that create visible defects on the raw Hi-C maps. The consequences of these widespread artifacts on the normalized maps are mostly unexplored. We observed that current normalization methods are not robust to the presence of large-scale copy number variations, potentially obscuring biological differences and enhancing batch effects. To address this issue, we developed an alternative approach designed to take into account chromosomal abnormalities. The method, called OneD, increases reproducibility among replicates of Hi-C samples with abnormal karyotype, outperforming previous methods significantly. On normal karyotypes, OneD fared equally well as state-of-the-art methods, making it a safe choice for Hi-C normalization. OneD is fast and scales well in terms of computing resources for resolutions up to 5 kb.


Assuntos
Cariótipo Anormal , Animais , Composição de Bases , Viés , Linhagem Celular , Aberrações Cromossômicas , Biologia Computacional/métodos , Biologia Computacional/estatística & dados numéricos , Simulação por Computador , Variações do Número de Cópias de DNA , Técnicas Genéticas , Humanos , Cadeias de Markov , Camundongos , Modelos Estatísticos , Reprodutibilidade dos Testes
3.
J Virol ; 92(10)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29343578

RESUMO

Upon HIV-1 infection, a reservoir of latently infected resting T cells prevents the eradication of the virus from patients. To achieve complete depletion, the existing virus-suppressing antiretroviral therapy must be combined with drugs that reactivate the dormant viruses. We previously described a novel chemical scaffold compound, MMQO (8-methoxy-6-methylquinolin-4-ol), that is able to reactivate viral transcription in several models of HIV latency, including J-Lat cells, through an unknown mechanism. MMQO potentiates the activity of known latency-reversing agents (LRAs) or "shock" drugs, such as protein kinase C (PKC) agonists or histone deacetylase (HDAC) inhibitors. Here, we demonstrate that MMQO activates HIV-1 independently of the Tat transactivator. Gene expression microarrays in Jurkat cells indicated that MMQO treatment results in robust immunosuppression, diminishes expression of c-Myc, and causes the dysregulation of acetylation-sensitive genes. These hallmarks indicated that MMQO mimics acetylated lysines of core histones and might function as a bromodomain and extraterminal domain protein family inhibitor (BETi). MMQO functionally mimics the effects of JQ1, a well-known BETi. We confirmed that MMQO interacts with the BET family protein BRD4. Utilizing MMQO and JQ1, we demonstrate how the inhibition of BRD4 targets a subset of latently integrated barcoded proviruses distinct from those targeted by HDAC inhibitors or PKC pathway agonists. Thus, the quinoline-based compound MMQO represents a new class of BET bromodomain inhibitors that, due to its minimalistic structure, holds promise for further optimization for increased affinity and specificity for distinct bromodomain family members and could potentially be of use against a variety of diseases, including HIV infection.IMPORTANCE The suggested "shock and kill" therapy aims to eradicate the latent functional proportion of HIV-1 proviruses in a patient. However, to this day, clinical studies investigating the "shocking" element of this strategy have proven it to be considerably more difficult than anticipated. While the proportion of intracellular viral RNA production and general plasma viral load have been shown to increase upon a shock regimen, the global viral reservoir remains unaffected, highlighting both the inefficiency of the treatments used and the gap in our understanding of viral reactivation in vivo Utilizing a new BRD4 inhibitor and barcoded HIV-1 minigenomes, we demonstrate that PKC pathway activators and HDAC and bromodomain inhibitors all target different subsets of proviral integration. Considering the fundamental differences of these compounds and the synergies displayed between them, we propose that the field should concentrate on investigating the development of combinatory shock cocktail therapies for improved reservoir reactivation.


Assuntos
Infecções por HIV/tratamento farmacológico , Proteínas Nucleares/antagonistas & inibidores , Quinolinas/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Ativação Viral/efeitos dos fármacos , Latência Viral/efeitos dos fármacos , Azepinas/farmacologia , Linfócitos T CD4-Positivos/virologia , Proteínas de Ciclo Celular , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Células HEK293 , HIV-1/metabolismo , Células HeLa , Inibidores de Histona Desacetilases/farmacologia , Humanos , Células Jurkat , Domínios Proteicos/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/biossíntese , Provírus/genética , Triazóis/farmacologia , Carga Viral/efeitos dos fármacos , Integração Viral/efeitos dos fármacos
4.
Mol Cell ; 67(4): 550-565.e5, 2017 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-28803780

RESUMO

DNA methylation is an essential epigenetic mark in mammals that has to be re-established after each round of DNA replication. The protein UHRF1 is essential for this process; it has been proposed that the protein targets newly replicated DNA by cooperatively binding hemi-methylated DNA and H3K9me2/3, but this model leaves a number of questions unanswered. Here, we present evidence for a direct recruitment of UHRF1 by the replication machinery via DNA ligase 1 (LIG1). A histone H3K9-like mimic within LIG1 is methylated by G9a and GLP and, compared with H3K9me2/3, more avidly binds UHRF1. Interaction with methylated LIG1 promotes the recruitment of UHRF1 to DNA replication sites and is required for DNA methylation maintenance. These results further elucidate the function of UHRF1, identify a non-histone target of G9a and GLP, and provide an example of a histone mimic that coordinates DNA replication and DNA methylation maintenance.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , DNA Ligase Dependente de ATP/metabolismo , Metilação de DNA , Replicação do DNA , DNA/biossíntese , Epigênese Genética , Antígenos de Histocompatibilidade/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Proteínas Estimuladoras de Ligação a CCAAT/química , Proteínas Estimuladoras de Ligação a CCAAT/genética , DNA/genética , DNA Ligase Dependente de ATP/química , DNA Ligase Dependente de ATP/genética , Células-Tronco Embrionárias/enzimologia , Células HEK293 , Células HeLa , Antígenos de Histocompatibilidade/química , Antígenos de Histocompatibilidade/genética , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/genética , Histonas/metabolismo , Humanos , Lisina , Metilação , Camundongos , Modelos Moleculares , Mimetismo Molecular , Mutação , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Transfecção , Domínio Tudor , Ubiquitina-Proteína Ligases
5.
Bull Cancer ; 93(4): 343-7, 2006 Apr.
Artigo em Francês | MEDLINE | ID: mdl-16627238

RESUMO

The term epigenetics encompasses all the modifications that are stable across cell generations, but which do not imply any change in DNA sequence. Post-translational modifications of the histones and DNA methylation are the most studied types of epigenetic information due to their major impact on transcription. The link between epigenetics and cancer arises from the fact that epigenetic deregulations frequently participate in tumorigenesis by inactivation of tumour-suppressor genes. Since these deregulations are reversible, hopes of treatment rely on a better understanding of the maintenance mechanisms of the epigenetic information. Among the different pathways of transcription inhibition, DNA methylation is the simplest and one of the best characterized at the present time. Inhibitors of DNA methyltransferases are currently under clinical trials and already show promising results.


Assuntos
Genes Supressores de Tumor , Neoplasias/genética , Metilação de DNA , Humanos , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA