Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Macromol Biosci ; 24(3): e2300266, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37821117

RESUMO

This study develops and characterizes novel biodegradable soft hydrogels with dual porosity based on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers cross-linked by hydrolytically degradable linkers. The structure and properties of the hydrogels are designed as scaffolds for tissue engineering and they are tested in vitro with model mesenchymal stem cells (rMSCs). Detailed morphological characterization confirms dual porosity suitable for cell growth and nutrient transport. The dual porosity of hydrogels slightly improves rMSCs proliferation compared to the hydrogel with uniform pores. In addition, the laminin coating supports the adhesion of rMSCs to the hydrogel surface. However, hydrogels modified by heptapeptide RGDSGGY significantly stimulate cell adhesion and growth. Moreover, the RGDS-modified hydrogels also affect the topology of proliferating rMSCs, ranging from single-cell to multicellular clusters. The 3D reconstruction of the hydrogels with cells obtained by laser scanning confocal microscopy (LSCM) confirms cell penetration into the inner structure of the hydrogel and its corresponding microstructure. The prepared biodegradable oligopeptide-modified hydrogels with dual porosity are suitable candidates for further in vivo evaluation in soft tissue regeneration.


Assuntos
Hidrogéis , Células-Tronco Mesenquimais , Hidrogéis/química , Engenharia Tecidual , Porosidade , Adesão Celular , Alicerces Teciduais/química
2.
Nanomaterials (Basel) ; 13(9)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37177080

RESUMO

In this report, we synthesized hexagonal NaYF4:Yb,Er upconverting nanoparticles (UCNPs) of 171 nm in size with a narrow particle size distribution. To address their colloidal stabi-lity in aqueous media and to incorporate a photosensitizer that can produce reactive singlet oxygen (1O2) to kill tumor cells, UCNPs were conjugated with 6-bromohexanoic acid-functionalized Rose Bengal (RB) and coated with PEG-alendronate (PEG-Ale). The particles were thoroughly characterized by transmission electron microscopy, dynamic light scattering, ATR FTIR, X-ray photoelectron spectroscopy, thermogravimetric analysis, and spectrofluorometry, and 1O2 formation was detected using a 9,10-diphenylanthracene spectrophotometric probe. Cytotoxicity determination on rat mesenchymal stem cells by using the MTT assay showed that neutralization of the large positive surface charge of neat UCNPs with PEG-Ale and the bound RB sensitizer significantly reduced the concentration-dependent cytotoxicity. The presented strategy shows great potential for the use of these particles as a novel agent for the photodynamic therapy of tumors.

3.
Nanomedicine (Lond) ; 17(19): 1307-1322, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36255034

RESUMO

Background: Exosomes are extracellular vesicles with the ability to encapsulate bioactive molecules, such as therapeutics. This study identified a new exosome mediated route of doxorubicin and poly(N-(2-hydroxypropyl)methacrylamide) (pHPMA)-bound doxorubicin trafficking in the tumor mass. Materials & methods: Exosome loading was achieved via incubation of the therapeutics with an adherent human breast adenocarcinoma cell line and its derived spheroids. Exosomes were characterized using HPLC, nanoparticle tracking analysis (NTA) and western blotting. Results: The therapeutics were successfully loaded into exosomes. Spheroids secreted significantly more exosomes than adherent cells and showed decreased viability after treatment with therapeutic-loaded exosomes, which confirmed successful transmission. Conclusion: To the best of our knowledge, this study provides the first evidence of pHPMA-drug conjugate secretion by extracellular vesicles.


Background: In cancer treatment, low-molecular-weight drugs (e.g., doxorubicin [DOX]) with a broad spectrum of side effects are commonly used. Through their conjugation with hydrophilic polymers ­ N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers ­ for example, most of the side effects can be reduced. These drug­polymer conjugates are delivered via bloodstream into the tumor. This study aimed to identify a new exosome-mediated route of DOX and polyHPMA(pHPMA)­DOX conjugates trafficking inside the tumor mass. Exosomes are small lipid membrane vesicles constitutively released from most of the cell types, including the tumor cells. Exosomes are able to encapsulate low-molecular-weight drugs. Methods: Exosomes were loaded with DOX and pHPMA-DOX in vitro via coincubation with cancer cells. Exosomes were isolated from the conditioned-cultivation medium after their release from cells and characterized (size, numbers, protein marker profiles). Results: The therapeutics were successfully loaded into exosomes and transmitted to the tumor cells. To the best of our knowledge, this is the first evidence of the pHPMA­drug conjugate secretion by exosomes.


Assuntos
Adenocarcinoma , Exossomos , Humanos , Polímeros , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Adenocarcinoma/tratamento farmacológico , Linhagem Celular Tumoral
4.
Nanomedicine ; 46: 102597, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36064033

RESUMO

Polymer nanomedicines with anti-tumor activity should exhibit sufficient stability during systemic circulation to the target tissue; however, they should release the active drug selectively in the tumor. Thus, choice of a tumor-specific stimuli-sensitive spacer between the drug and the carrier is critical. Here, a series of polymer conjugates of anti-cancer drugs doxorubicin and pirarubicin covalently bound to copolymers based on N-(2-hydroxypropyl)methacrylamide via various enzymatically cleavable oligopeptide spacers were prepared and characterized. The highest rate of the drug release from the polymer carriers in presence of the lysosomal protease cathepsin B was determined for the copolymers with Val-Cit-Aba spacer. Copolymers containing pirarubicin were more cytotoxic and showed higher internalization rate than the corresponding doxorubicin counterparts. The conjugates containing GFLG and Val-Cit-Aba spacers exhibited the highest anti-tumor efficacy in vivo against murine sarcoma S-180, the highest rate of the enzymatically catalyzed drug release, and the highest cytotoxicity in vitro.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Camundongos , Animais , Polímeros/química , Nanomedicina , Doxorrubicina/farmacologia , Doxorrubicina/química , Neoplasias/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química , Portadores de Fármacos/química , Linhagem Celular Tumoral
5.
Life (Basel) ; 12(9)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36143419

RESUMO

High-quality upconverting NaYF4:Yb3+,Er3+ nanoparticles (UCNPs; 26 nm in diameter) based on lanthanides were synthesized by a high-temperature coprecipitation method. The particles were modified by bisphosphonate-terminated poly(ethylene glycol) (PEG) and Rose Bengal (RB) photosensitizer. The particles were thoroughly characterized using transmission electron microscopy, dynamic light scattering, thermogravimetric analysis, FTIR, and X-ray photoelectron and upconversion luminescence spectroscopy in terms of morphology, hydrodynamic size, composition, and energy transfer to the photosensitizer. Moreover, the singlet oxygen generation from RB-containing UCNPs was investigated using 9,10-diphenylanthracene probe under 980 nm excitation. The cytotoxicity of UCNPs before and after conjugation with RB was evaluated on highly sensitive rat mesenchymal stem cells (rMSCs) and significant differences were found. Correspondingly, consi-derable variations in viability were revealed between the irradiated and non-irradiated rat glioma cell line (C6) exposed to RB-conjugated UCNPs. While the viability of rMSCs was not affected by the presence of UCNPs themselves, the cancer C6 cells were killed after the irradiation at 980 nm due to the reactive oxygen species (ROS) production, thus suggesting the potential of RB-conjugated PEG-modified UCNPs for applications in photodynamic therapy of cancer.

6.
J Med Chem ; 65(5): 3866-3878, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35157467

RESUMO

Galectin-3 (Gal-3) participates in many cancer-related metabolic processes. The inhibition of overexpressed Gal-3 by, e.g., ß-galactoside-derived inhibitors is hence promising for cancer treatment. The multivalent presentation of such inhibitors on a suitable biocompatible carrier can enhance the overall affinity to Gal-3 and favorably modify the interaction with Gal-3-overexpressing cells. We synthesized a library of C-3 aryl-substituted thiodigalactoside inhibitors and their multivalent N-(2-hydroxypropyl)methacrylamide (HPMA)-based counterparts with two different glycomimetic contents. Glycopolymers with a higher content of glycomimetic exhibited a higher affinity to Gal-3 as assessed by ELISA and biolayer interferometry. Among them, four candidates (with 4-acetophenyl, 4-cyanophenyl, 4-fluorophenyl, and thiophen-3-yl substitution) were selected for further evaluation in cancer-related experiments in cell cultures. These glycopolymers inhibited Gal-3-induced processes in cancer cells. The cyanophenyl-substituted glycopolymer exhibited the strongest antiproliferative, antimigratory, antiangiogenic, and immunoprotective properties. The prepared glycopolymers appear to be prospective modulators of the tumor microenvironment applicable in the therapy of Gal-3-associated cancers.


Assuntos
Galectina 3 , Tiogalactosídeos , Galectina 3/metabolismo , Estudos Prospectivos , Tiogalactosídeos/farmacologia
7.
Nanoscale ; 13(45): 19023-19037, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34755752

RESUMO

Multimodal gadolinium fluoride nanoparticles belong to potential contrast agents useful for bimodal optical fluorescence and magnetic resonance imaging. However, the metallic nature of the nanoparticles, similarly to some paramagnetic iron oxides, might induce allergic and anaphylactic reactions in patients after administration. A reduction of these adverse side effects is a priority for the safe application of the nanoparticles. Herein, we prepared paramagnetic poly(4-styrenesulfonic acid-co-maleic acid) (PSSMA)-stabilized GdF3 nanoparticles with surface modified by Atto 488-labeled poly(styrene-grad-2-dimethylaminoethyl acrylate)-block-poly(2-dimethylaminoethyl acrylate) (PSDA-A488) with reactive amino groups for introduction of an additional imaging (luminescence) modality and possible targeting of anticancer drugs. The saturation magnetization of GdF3@PSSMA particles according to SQUID magnetometry reached 157 Am2 kg-1 at 2 K and magnetic field of 7 T. GdF3@PSSMA-PSDA-A488 nanoparticles were well tolerated by human cervical adenocarcinoma (HeLa), mouse bone marrow-derived mast cells (BMMC), and rat basophilic mast cells (RBL-2H3); the particles also affected cell morphology and protein tyrosine phosphorylation in mast cells. Moreover, the nanoparticles interfered with the activation of mast cells by multivalent antigens and inhibited calcium mobilization and cell degranulation. These findings show that the new multimodal GdF3-based nanoparticles possess properties useful for various imaging methods and might minimize mast cell degranulation incurred after future nanoparticle diagnostic administration.


Assuntos
Mastócitos , Nanopartículas , Animais , Degranulação Celular , Fator 3 de Diferenciação de Crescimento , Humanos , Camundongos , Polímeros , Ratos
8.
Eur J Med Chem ; 220: 113500, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-33962190

RESUMO

Galectin-3 plays a crucial role in cancerogenesis; its targeting is a prospective pathway in cancer diagnostics and therapy. Multivalent presentation of glycans was shown to strongly increase the affinity of glycoconjugates to galectin-3. Further strengthening of interaction with galectin-3 may be accomplished using artificial glycomimetics with apt aryl substitutions. We established a new, as yet undescribed chemoenzymatic method to produce selective C-3-substituted N,N'-diacetyllactosamine glycomimetics and coupled them to human serum albumin. From a library of enzymes, only ß-N-acetylhexosaminidase from Talaromyces flavus was able to efficiently synthesize the C-3-propargylated disaccharide. Various aryl residues were attached to the functionalized N,N'-diacetyllactosamine via click chemistry to assess the impact of the aromatic substitution. In ELISA-type assays with galectin-3, free glycomimetics exhibited up to 43-fold stronger inhibitory potency to Gal-3 than the lactose standard. Coupling to human serum albumin afforded multivalent neo-glycoproteins with up to 4209-fold increased inhibitory potency per glycan compared to the monovalent lactose standard. Surface plasmon resonance brought further information on the kinetics of galectin-3 inhibition. The potential of prepared neo-glycoproteins to target galectin-3 was demonstrated on colorectal adenocarcinoma DLD-1 cells. We investigated the uptake of neo-glycoproteins into cells and observed limited non-specific transport into the cytoplasm. Therefore, neo-glycoproteins primarily act as efficient scavengers of exogenous galectin-3 of cancer cells, inhibiting its interaction with the cell surface, and protecting T-lymphocytes against galectin-3-induced apoptosis. The present neo-glycoproteins combine the advantage of a straightforward synthesis, selectivity, non-toxicity, and high efficiency for targeting exogenous galectin-3, with possible application in the immunomodulatory treatment of galectin-3-overexpressing cancers.


Assuntos
Materiais Biomiméticos/farmacologia , Proteínas Sanguíneas/antagonistas & inibidores , Galectinas/antagonistas & inibidores , Glicoproteínas/metabolismo , Materiais Biomiméticos/síntese química , Materiais Biomiméticos/química , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , Relação Dose-Resposta a Droga , Galectinas/genética , Galectinas/metabolismo , Glicoproteínas/química , Humanos , Cinética , Estrutura Molecular , Relação Estrutura-Atividade
9.
Biomacromolecules ; 21(8): 3122-3133, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32697592

RESUMO

The development of efficient galectin-3 (Gal-3) inhibitors draws attention in the field of anti-cancer therapy, especially due to the prominent role of extra- and intracellular Gal-3 in vital processes of cancerogenesis, such as immunosuppression, stimulation of tumor cells proliferation, survival, invasion, apoptotic resistance, and metastasis formation and progression. Here, by combining poly-LacNAc (Galß4GlcNAc)-derived oligosaccharides with N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers, we synthesized multivalent glycopolymer inhibitors with a high potential to target extracellular and intracellular Gal-3. The inhibitory capabilities of the best conjugate in the studied series were in the nanomolar range proving the excellent Gal-3 inhibitory potential. Moreover, thorough investigation of the inhibitory effect in the biological conditions showed that the glycopolymers strongly inhibited Gal-3-induced apoptosis of T lymphocytes and suppressed migration and spreading of colorectal, breast, melanoma, and prostate cancer cells. In sum, the strong inhibitory activity toward Gal-3, combined with favorable pharmacokinetics of HPMA copolymers ensuring enhanced tumor accumulation via the enhanced permeability and retention effect, nominate the glycopolymers containing LacdiNAc-LacNAc (GalNAcß4GlcNAcß3Galß4GlcNAc) tetrasaccharide as promising tools for preclinical in anti-cancer therapy evaluation.


Assuntos
Apoptose , Galectina 3 , Linhagem Celular Tumoral , Movimento Celular , Humanos , Masculino , Polímeros , Linfócitos T
10.
Pharmaceutics ; 12(1)2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31906300

RESUMO

This report describes the design, synthesis and evaluation of tumor-targeted polymer probes to visualize epidermal growth factor receptor (EGFR)-positive malignant tumors for successful resection via fluorescence guided endoscopic surgery. Fluorescent polymer probes of various molecular weights enabling passive accumulation in tumors via enhanced permeability and retention were prepared and evaluated, showing an optimal molecular weight of 200,000 g/mol for passive tumor targeting. Moreover, poly(N-(2-hydroxypropyl)methacrylamide)-based copolymers labeled with fluorescent dyes were targeted with the EGFR-binding oligopeptide GE-11 (YHWYGYTPQNVI), human EGF or anti-EGFR monoclonal antibody cetuximab were all able to actively target the surface of EGFR-positive tumor cells. Nanoprobes targeted with GE-11 and cetuximab showed the best targeting profile but differed in their tumor accumulation kinetics. Cetuximab increased tumor accumulation after 15 min, whereas GE 11 needed at least 4 h. Interestingly, after 4 h, there were no significant differences in tumor targeting, indicating the potential of oligopeptide targeting for fluorescence-navigated surgery. In conclusion, fluorescent polymer probes targeted by oligopeptide GE-11 or whole antibody are excellent tools for surgical navigation during oncological surgery of head and neck squamous cell carcinoma, due to their relatively simple design, synthesis and cost, as well as optimal pharmacokinetics and accumulation in tumors.

11.
Pharmaceutics ; 12(12)2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33419291

RESUMO

Nanomedicines are a novel class of therapeutics that benefit from the nano dimensions of the drug carrier. These nanosystems are highly advantageous mainly within cancer treatment due to their enhanced tumor accumulation. Monolayer tumor cells frequently used in routine preclinical assessment of nanotherapeutics do not have a spatial structural architecture that allows the investigation of the penetration of nanomedicines to predict their behavior in real tumor tissue. Therefore, tumor spheroids from colon carcinoma C26 cells and glioblastoma U87-MG cells were used as 3D in vitro models to analyze the effect of the inner structure, hydrodynamic size, dispersity, and biodegradability of N-(2-hydroxypropyl)methacrylamide (HPMA) copolymer-based nanomedicines carrying anticancer drug pirarubicin (THP) on the penetration within spheroids. While almost identical penetration through spheroids of linear and star-like copolymers and also their conjugates with THP was observed, THP penetration after nanomedicines application was considerably deeper than for the free THP, thus proving the benefit of polymer carriers. The cytotoxicity of THP-polymer nanomedicines against tumor cell spheroids was almost identical as for the free THP, whereas the 2D cell cytotoxicity of these nanomedicines is usually lower. The nanomedicines thus proved the enhanced efficacy within the more realistic 3D tumor cell spheroid system.

12.
Mol Biol Rep ; 46(3): 3063-3072, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30859448

RESUMO

The efficiency of solid phase extraction (SPE) of DNA on polymer particles is limited by the features of the applied solid support, such as size, hydrophilicity, and functionality and their application in SPE also requires additional steps and compounds to finally obtain sufficient amount of high-quality DNA. The present study describes a preparation of sub-micrometer monodisperse poly(methacrylic acid-co-ethylene dimethacrylate) (PME) particles by precipitation polymerization. The effect of the ethylene dimethacrylate (EDMA) crosslinker concentration on morphology and particle size, which varied from 730 to 900 nm, was investigated. The particles with 5 and 15 wt% EDMA were selected for a study of SPE of plasmid DNA under various adsorption and elution conditions, followed by the enzymatic restriction of isolated DNA to verify a quality the nucleic acid. The particles with 15 wt% EDMA were suitable for the SPE because they retained better colloidal stability during the adsorption without additional induction of DNA conformational change. The quality of isolated DNA was finally verified by enzymatic restriction by restriction endonuclease EcoRI. Moreover, the developed method using PME particles was successfully utilized for DNA isolation from Escherichia coli lysate.


Assuntos
DNA/isolamento & purificação , Extração em Fase Sólida , DNA/química , DNA Bacteriano/química , DNA Bacteriano/isolamento & purificação , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Polímeros/química , Polimetil Metacrilato/química , Extração em Fase Sólida/métodos
13.
PLoS One ; 7(5): e36816, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22590616

RESUMO

Polydendrocytes (also known as NG2 glial cells) constitute a fourth major glial cell type in the adult mammalian central nervous system (CNS) that is distinct from other cell types. Although much evidence suggests that these cells are multipotent in vitro, their differentiation potential in vivo under physiological or pathophysiological conditions is still controversial.To follow the fate of polydendrocytes after CNS pathology, permanent middle cerebral artery occlusion (MCAo), a commonly used model of focal cerebral ischemia, was carried out on adult NG2creBAC:ZEG double transgenic mice, in which enhanced green fluorescent protein (EGFP) is expressed in polydendrocytes and their progeny. The phenotype of the EGFP(+) cells was analyzed using immunohistochemistry and the patch-clamp technique 3, 7 and 14 days after MCAo. In sham-operated mice (control), EGFP(+) cells in the cortex expressed protein markers and displayed electrophysiological properties of polydendrocytes and oligodendrocytes. We did not detect any co-labeling of EGFP with neuronal, microglial or astroglial markers in this region, thus proving polydendrocyte unipotent differentiation potential under physiological conditions. Three days after MCAo the number of EGFP(+) cells in the gliotic tissue dramatically increased when compared to control animals, and these cells displayed properties of proliferating cells. However, in later phases after MCAo a large subpopulation of EGFP(+) cells expressed protein markers and electrophysiological properties of astrocytes that contribute to the formation of glial scar. Importantly, some EGFP(+) cells displayed membrane properties typical for neural precursor cells, and moreover these cells expressed doublecortin (DCX)--a marker of newly-derived neuronal cells. Taken together, our data indicate that polydendrocytes in the dorsal cortex display multipotent differentiation potential after focal ischemia.


Assuntos
Antígenos de Diferenciação/biossíntese , Isquemia Encefálica/metabolismo , Diferenciação Celular , Proliferação de Células , Proteínas do Tecido Nervoso/biossíntese , Neuroglia/metabolismo , Animais , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Proteína Duplacortina , Camundongos , Camundongos Transgênicos , Neuroglia/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA