Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Oncotarget ; 14: 738-746, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37477521

RESUMO

Reduced SIRT2 deacetylation and increased p300 acetylation activity leads to a concerted mechanism of hyperacetylation at specific histone lysine sites (H3K9, H3K14, and H3K18) in castration-resistant prostate cancer (CRPC). We examined whether circulating tumor cells (CTCs) identify patients with altered p300/CBP acetylation. CTCs were isolated from 13 advanced PC patients using Exclusion-based Sample Preparation (ESP) technology. Bound cells underwent immunofluorescent staining for histone modifying enzymes (HMEs) of interest and image capture with NIS-Elements software. Using the cBioPortal PCF/SU2C dataset, the response of CRPC to androgen receptor signaling inhibitors (ARSI) was analyzed in 50 subjects. Staining optimization and specificity revealed clear expression of acetyl-p300, acetyl-H3K18, and SIRT2 on CTCs (CK positive, CD45 negative cells). Exposure to A-485, a selective p300/CBP catalytic inhibitor, reduced p300 and H3K18 acetylation. In CRPC patients, a-p300 strongly correlated with its target acetylated H3k18 (Pearson's R = 0.61), and SIRT2 expression showed robust negative correlation with a-H3k18 (R = -0.60). A subgroup of CRPC patients (6/11; 55%) demonstrated consistent upregulation of acetylation based on these markers. To examine the clinical impact of upregulation of the CBP/p300 axis, CRPC patients with reduced deacetylase SIRT2 expression demonstrate shorter response times to ARSI therapy (5.9 vs. 12 mo; p = 0.03). A subset of CRPC patients demonstrate increased p300/CBP activity based on a novel CTC biomarker assay. With further development, this biomarker suite may be used to identify candidates for CBP/p300 acetylation inhibitors in clinical development.


Assuntos
Células Neoplásicas Circulantes , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Histonas/metabolismo , Sirtuína 2 , Fatores de Transcrição de p300-CBP/metabolismo , Acetilação
2.
Prostate ; 82(16): 1547-1557, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35980831

RESUMO

BACKGROUND: Androgen deprivation therapy (ADT) has been the standard of care for advanced hormone-sensitive prostate cancer (PC), yet tumors invariably develop resistance resulting in castrate-resistant PC. The acute response of cancer cells to ADT includes apoptosis and cell death, but a large fraction remains arrested but viable. In this study, we focused on intensively characterizing the early metabolic changes that result after ADT to define potential metabolic targets for treatment. METHODS: A combination of mass spectrometry, optical metabolic imaging which noninvasively measures drug responses in cells, oxygen consumption rate, and protein expression analysis was used to characterize and block metabolic pathways over several days in multiple PC cell lines with variable hormone response status including ADT sensitive lines LNCaP and VCaP, and resistant C4-2 and DU145. RESULTS: Mass spectrometry analysis of LNCaP pre- and postexposure to ADT revealed an abundance of glycolytic intermediates after ADT. In LNCaP and VCaP, a reduction in the optical redox ratio [NAD(P)H/FAD], extracellular acidification rate, and a downregulation of key regulatory enzymes for fatty acid and glutamine utilization was acutely observed after ADT. Screening several metabolic inhibitors revealed that blocking fatty acid oxidation and synthesis reversed this stress response in the optical redox ratio seen with ADT alone in LNCaP and VCaP. In contrast, both cell lines demonstrated increased sensitivity to the glycolytic inhibitor 2-Deoxy- d-glucose(2-DG) and maintained sensitivity to electron transport chain inhibitor Malonate after ADT exposure. ADT followed by 2-DG results in synergistic cell death, a result not seen with simultaneous administration. CONCLUSIONS: Hormone-sensitive PC cells displayed altered metabolic profiles early after ADT including an overall depression in energy metabolism, induction of a quiescent/senescent phenotype, and sensitivity to selected metabolic inhibitors. Glycolytic blocking agents (e.g., 2-DG) as a sequential treatment after ADT may be promising.


Assuntos
Neoplasias da Próstata , Humanos , Masculino , Neoplasias da Próstata/patologia , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Androgênios/metabolismo , Linhagem Celular Tumoral , Ácidos Graxos
3.
Br J Cancer ; 125(2): 247-254, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33976366

RESUMO

BACKGROUND: Histone modifications alter transcriptional gene function and participate in cancer progression. Enhancer-of-Zeste-Homologue-2 (EZH2) and Nuclear-Receptor-Binding-SET-domain2 (NSD2) methylate H3K27 and H3K36, respectively, to regulate transcription. Given the therapeutic interest in these enzymes, we investigated expression and coregulation in hormone-sensitive (HS) and castrate-resistant (CR) prostate cancer (PC). METHODS: EZH2 and NSD2 levels were quantified using VECTRA analysis in HS and CRPC tissue microarrays (n = 105 + 66). Expression data from The Cancer Genome Atlas (n = 498), Memorial Sloan Kettering Cancer Center (n = 240), and Stand Up to Cancer/Prostate Cancer Foundation (n = 444) cBioportal datasets were queried, and associations between EZH2 and NSD2 and clinicopathologic variables determined. RESULTS: Tumour expression of NSD2, but not EZH2, increased in CRPC (p = 0.05, 0.09). Epithelial nuclei co-expressing NSD2 and EZH2 increased in CRPC compared to HSPC (69 vs 42%, p = 0.02), and in metastatic tissue relative to benign (55 vs 35%, p = 0.02). cBioportal analysis revealed collinear NSD2/EZH2 expression (Spearman = 0.57, 0.58, 0.58, all p < 0.001). NSD2/EZH2 co-expression significantly associates with clinicopathologic characteristics including grade group, stage and seminal vesicle involvement. On univariate and multivariate analysis tumours co-expressing NSD2 and EZH2 conferred increased risk of recurrence (hazard ratio: 2.6, 95% confidence inerval: 1.2-5.4, p = 0.01). Kaplan-Meier analysis revealed reduced progression-free-survival of NSD2 and EZH2 co-expression patients in datasets (p < 0.001, 0.002). CONCLUSIONS: Increased EZH2/NSD2 co-expression is overrepresented in CRPC, metastases and associates with shorter disease-free survival in PC patients. Coregulation of these two histone methyltransferases is a biomarker for aggressive PC and licenses them as therapeutic targets.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Neoplasias da Próstata/patologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Bases de Dados Genéticas , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Código das Histonas , Humanos , Masculino , Gradação de Tumores , Estadiamento de Neoplasias , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Análise Serial de Tecidos , Regulação para Cima
4.
Dig Dis Sci ; 66(6): 2032-2041, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32676826

RESUMO

BACKGROUND: Total abdominal colectomy (TAC) is a treatment modality of last recourse for patients with severe and/or refractory ulcerative colitis (UC). The goal of this study is to evaluate temporal trends and treatment outcomes following TAC among hospitalized UC patients in the biologic era. METHODS: We queried the National Inpatient Sample (NIS) to identify patients older than 18 years with a primary diagnosis of ulcerative colitis (UC) who underwent TAC between 2002 and 2013. We evaluated postoperative morbidity and mortality as outcomes of interest. Logistic regression was used to explore factors associated with postoperative morbidity and mortality after TAC. RESULTS: A weighted total of 307,799 UC hospitalizations were identified. Of these, 27,853 (9%) resulted in TAC. Between 2002 and 2013, hospitalizations for UC increased by over 70%; however, TAC rates dropped significantly from 111.1 to 77.1 colectomies per 1000 UC admissions. Overall, 2.2% of patients died after TAC. Mortality rates after TAC decreased from 3.5% in 2002 to 1.4% in 2013. Conversely, morbidity rates were stable throughout the study period. UC patients with emergent admissions, higher comorbidity scores and who had TAC in low volume colectomy hospitals had poorer outcomes. Regardless of admission type, outcomes were worse if TAC was performed more than 24 h after admission. CONCLUSIONS: Despite increased hospitalizations for UC, rates of TAC have declined during the post-biologic era. For UC patients who undergo TAC, mortality has declined significantly while morbidity remains stable. Older age, race, emergent admissions and delayed surgery are predictive factors of both postoperative morbidity and mortality.


Assuntos
Produtos Biológicos/administração & dosagem , Colectomia/mortalidade , Colectomia/tendências , Colite Ulcerativa/mortalidade , Bases de Dados Factuais/tendências , Mortalidade/tendências , Adulto , Idoso , Produtos Biológicos/economia , Estudos de Coortes , Colectomia/economia , Colite Ulcerativa/economia , Colite Ulcerativa/terapia , Bases de Dados Factuais/economia , Feminino , Custos de Cuidados de Saúde/tendências , Humanos , Pacientes Internados , Masculino , Pessoa de Meia-Idade , Morbidade/tendências
5.
Prostate ; 81(1): 41-49, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33095939

RESUMO

INTRODUCTION OR OBJECTIVE: Men with favorable-risk prostate cancer (PCa) on active surveillance may benefit from intervention strategies to slow or prevent disease progression and the need for definitive treatment. Pomegranate and its extracts have shown antiproliferative and proapoptotic effects in cell lines and animal models, but its effect on human prostate cancer as a target tissue remain unclear. Objectives of this trial include pomegranate's ability to alter serum and prostate tissue biomarkers and the ability of an active surveillance cohort to adhere to a chemoprevention trial for 1 year. METHODS: Men with organ-confined, favorable-risk PCa on AS were randomly assigned to receive pomegranate fruit extract (PFE) 1000 mg (n = 15) or placebo (n = 15) once daily for twelve months. Prostate biopsies were performed at study entry and upon completion of the 1-year intervention. Plasma and urinary biomarkers were analyzed utilizing immunoassays and HPLC. Tissue proteins were assessed by immunohistochemistry (IHC) and measured by automated quantitation. RESULTS: PFE was well-tolerated with no significant toxicities. One patient withdrew before study initiation and 29 completed the 1-year intervention. No differences in plasma insulin-like growth factor-1 (IGF-1) levels, prostate-specific antigen doubling time, or biopsy kinetics were observed. Metabolites including urolithin A and urolithin A-gluc were detected more frequently in the PFE arm in both urine and plasma (p < .001 and p = .006, respectively). IHC analyses revealed reductions from baseline in 8-OHdG (a DNA damage marker) (p = .01) and androgen receptor expression (p = .04) in prostate tumor associated with PFE treatment. CONCLUSION: PFE administration for 12-month was well-tolerated and the protocol followed in an active surveillance population. Analyses suggest that PFE contains bioactive compounds capable of altering biomarkers involving oxidative stress and androgen signaling in prostate tumor and normal-appearing adjacent tissue. No alterations in the IGF axis were noted. This finding of study adherence and target activity provides a rationale for the further investigation of PFE in the active surveillance population.


Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Extratos Vegetais/administração & dosagem , Punica granatum/química , Neoplasias da Próstata/tratamento farmacológico , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/urina , Biópsia , Frutas/química , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/sangue , Fator de Crescimento Insulin-Like I/metabolismo , Calicreínas/sangue , Masculino , Pessoa de Meia-Idade , Fitoterapia , Placebos , Extratos Vegetais/isolamento & purificação , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/sangue , Neoplasias da Próstata/patologia , Neoplasias da Próstata/urina , Conduta Expectante
6.
Mol Cancer Ther ; 19(11): 2278-2287, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32943543

RESUMO

The initiation of androgen-deprivation therapy (ADT) induces susceptibilities in prostate cancer cells that make them vulnerable to synergistic treatment and enhanced cell death. Senescence results in cell-cycle arrest, but cells remain viable. In this study, we investigated the mechanisms by which prostate cancer cells undergo senescence in response to ADT, and determined whether an FDA-approved antidiabetic drug metformin has a synergistic effect with ADT in prostate cancer both in vitro and in vivo Our results show that longer term exposure to ADT induced senescence associated with p16INK4a and/or p27kip2 induction. The activation of PI3K/AKT and inactivation of AMPK in senescent cells resulted in mTORC1 activation. In addition, the antiapoptotic protein XIAP expression was increased in response to ADT. The addition of metformin following ADT induced apoptosis, attenuated mTOR activation, reduced senescent cell number in vitro, and inhibited tumor growth in prostate cancer patient-derived xenograft models. This study suggests that combining ADT and metformin may be a feasible therapeutic approach to remove persistent prostate cancer cells after ADT.


Assuntos
Androgênios/metabolismo , Metabolismo Energético/efeitos dos fármacos , Metformina/farmacologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Mutações Sintéticas Letais , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Linhagem Celular Tumoral , Senescência Celular/genética , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Modelos Biológicos , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA