Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Brain ; 145(7): 2472-2485, 2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-34918030

RESUMO

Frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) is a complex heterogeneous neurodegenerative disorder for which mechanisms are poorly understood. To explore transcriptional changes underlying FTLD-TDP, we performed RNA-sequencing on 66 genetically unexplained FTLD-TDP patients, 24 FTLD-TDP patients with GRN mutations and 24 control participants. Using principal component analysis, hierarchical clustering, differential expression and coexpression network analyses, we showed that GRN mutation carriers and FTLD-TDP-A patients without a known mutation shared a common transcriptional signature that is independent of GRN loss-of-function. After combining both groups, differential expression as compared to the control group and coexpression analyses revealed alteration of processes related to immune response, synaptic transmission, RNA metabolism, angiogenesis and vesicle-mediated transport. Deconvolution of the data highlighted strong cellular alterations that were similar in FTLD-TDP-A and GRN mutation carriers with NSF as a potentially important player in both groups. We propose several potentially druggable pathways such as the GABAergic, GDNF and sphingolipid pathways. Our findings underline new disease mechanisms and strongly suggest that affected pathways in GRN mutation carriers extend beyond GRN and contribute to genetically unexplained forms of FTLD-TDP-A.


Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Progranulinas , Encéfalo/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mutação , Progranulinas/genética , Progranulinas/metabolismo , Transcriptoma
2.
Mol Neurodegener ; 13(1): 37, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29986742

RESUMO

BACKGROUND: Progressive supranuclear palsy (PSP) is a parkinsonian neurodegenerative tauopathy affecting brain regions involved in motor function, including the basal ganglia, diencephalon and brainstem. While PSP is largely considered to be a sporadic disorder, cases with suspected familial inheritance have been identified and the common MAPT H1haplotype is a major genetic risk factor. Due to the relatively low prevalence of PSP, large sample sizes can be difficult to achieve, and this has limited the ability to detect true genetic risk factors at the genome-wide statistical threshold for significance in GWAS data. With this in mind, in this study we genotyped the genetic variants that displayed the strongest degree of association with PSP (P<1E-4) in the previous GWAS in a new cohort of 533 pathologically-confirmed PSP cases and 1172 controls, and performed a combined analysis with the previous GWAS data. RESULTS: Our findings validate the known association of loci at MAPT, MOBP, EIF2AK3 and STX6 with risk of PSP, and uncover novel associations with SLCO1A2 (rs11568563) and DUSP10 (rs6687758) variants, both of which were classified as non-significant in the original GWAS. CONCLUSIONS: Resolving the genetic architecture of PSP will provide mechanistic insights and nominate candidate genes and pathways for future therapeutic intervention strategies.


Assuntos
Fosfatases de Especificidade Dupla/genética , Predisposição Genética para Doença/genética , Fosfatases da Proteína Quinase Ativada por Mitógeno/genética , Transportadores de Ânions Orgânicos/genética , Paralisia Supranuclear Progressiva/genética , Idoso , Idoso de 80 Anos ou mais , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
3.
Acta Neuropathol Commun ; 6(1): 42, 2018 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-29855382

RESUMO

Loss-of-function mutations in progranulin (GRN) and a non-coding (GGGGCC)n hexanucleotide repeat expansions in C9ORF72 are the two most common genetic causes of frontotemporal lobar degeneration with aggregates of TAR DNA binding protein 43 (FTLD-TDP). TMEM106B encodes a type II transmembrane protein with unknown function. Genetic variants in TMEM106B associated with reduced TMEM106B levels have been identified as disease modifiers in individuals with GRN mutations and C9ORF72 expansions. Recently, loss of Tmem106b has been reported to protect the FTLD-like phenotypes in Grn-/- mice. Here, we generated Tmem106b-/- mice and examined whether loss of Tmem106b could rescue FTLD-like phenotypes in an AAV mouse model of C9ORF72-repeat induced toxicity. Our results showed that neither partial nor complete loss of Tmem106b was able to rescue behavioral deficits induced by the expression of (GGGGCC)66 repeats (66R). Loss of Tmem106b also failed to ameliorate 66R-induced RNA foci, dipeptide repeat protein formation and pTDP-43 pathological burden. We further found that complete loss of Tmem106b increased astrogliosis, even in the absence of 66R, and failed to rescue 66R-induced neuronal cell loss, whereas partial loss of Tmem106b significantly rescued the neuronal cell loss but not neuroinflammation induced by 66R. Finally, we showed that overexpression of 66R did not alter expression of Tmem106b and other lysosomal genes in vivo, and subsequent analyses in vitro found that transiently knocking down C9ORF72, but not overexpression of 66R, significantly increased TMEM106B and other lysosomal proteins. In summary, reducing Tmem106b levels failed to rescue FTLD-like phenotypes in a mouse model mimicking the toxic gain-of-functions associated with overexpression of 66R. Combined with the observation that loss of C9ORF72 and not 66R overexpression was associated with increased levels of TMEM106B, this work suggests that the protective TMEM106B haplotype may exert its effect in expansion carriers by counteracting lysosomal dysfunction resulting from a loss of C9ORF72.


Assuntos
Proteína C9orf72/genética , Expansão das Repetições de DNA/genética , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/terapia , Regulação da Expressão Gênica/genética , Proteínas de Membrana/deficiência , Proteínas Supressoras de Tumor/deficiência , Animais , Proteína C9orf72/metabolismo , Linhagem Celular Transformada , Condicionamento Psicológico/fisiologia , Modelos Animais de Doenças , Comportamento Exploratório , Medo/psicologia , Degeneração Lobar Frontotemporal/psicologia , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Glicerofosfatos , Humanos , Relações Interpessoais , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução Genética , Proteínas Supressoras de Tumor/genética
4.
Am J Hum Genet ; 97(3): 465-74, 2015 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-26279204

RESUMO

Penttinen syndrome is a distinctive disorder characterized by a prematurely aged appearance with lipoatrophy, epidermal and dermal atrophy along with hypertrophic lesions that resemble scars, thin hair, proptosis, underdeveloped cheekbones, and marked acro-osteolysis. All individuals have been simplex cases. Exome sequencing of an affected individual identified a de novo c.1994T>C p.Val665Ala variant in PDGFRB, which encodes the platelet-derived growth factor receptor ß. Three additional unrelated individuals with this condition were shown to have the identical variant in PDGFRB. Distinct mutations in PDGFRB have been shown to cause infantile myofibromatosis, idiopathic basal ganglia calcification, and an overgrowth disorder with dysmorphic facies and psychosis, none of which overlaps with the clinical findings in Penttinen syndrome. We evaluated the functional consequence of this causative variant on the PDGFRB signaling pathway by transfecting mutant and wild-type cDNA into HeLa cells, and transfection showed ligand-independent constitutive signaling through STAT3 and PLCγ. Penttinen syndrome is a clinically distinct genetic condition caused by a PDGFRB gain-of-function mutation that is associated with a specific and unusual perturbation of receptor function.


Assuntos
Acro-Osteólise/genética , Acro-Osteólise/patologia , Deformidades Congênitas dos Membros/genética , Deformidades Congênitas dos Membros/patologia , Mutação Puntual/genética , Progéria/genética , Progéria/patologia , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Transdução de Sinais/genética , DNA Complementar/genética , Feminino , Genes Dominantes/genética , Células HeLa , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Fosforilação , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Fatores de Tempo
5.
Hum Mutat ; 35(8): 964-71, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24796542

RESUMO

Three causal genes for idiopathic basal ganglia calcification (IBGC) have been identified. Most recently, mutations in PDGFRB, encoding a member of the platelet-derived growth factor receptor family type ß, and PDGFB, encoding PDGF-B, the specific ligand of PDGFRß, were found implicating the PDGF-B/PDGFRß pathway in abnormal brain calcification. In this study, we aimed to identify and study mutations in PDGFRB and PDGFB in a series of 26 patients from the Mayo Clinic Florida Brain Bank with moderate to severe basal ganglia calcification (BCG) of unknown etiology. No mutations in PDGFB were found. However, we identified one mutation in PDGFRB, p.R695C located in the tyrosine kinase domain, in one BGC patient. We further studied the function of p.R695C mutant PDGFRß and two previously reported mutants, p.L658P and p.R987W PDGFRß in cell culture. We show that, in response to PDGF-BB stimulation, the p.L658P mutation completely suppresses PDGFRß autophosphorylation, whereas the p.R695C mutation results in partial loss of autophosphorylation. For the p.R987W mutation, our data suggest a different mechanism involving reduced protein levels. These genetic and functional studies provide the first insight into the pathogenic mechanisms associated with PDGFRB mutations and provide further support for a pathogenic role of PDGFRB mutations in BGC.


Assuntos
Doenças dos Gânglios da Base/genética , Calcinose/genética , Mutação , Doenças Neurodegenerativas/genética , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas c-sis/genética , Receptor beta de Fator de Crescimento Derivado de Plaquetas/genética , Idoso , Idoso de 80 Anos ou mais , Autopsia , Doenças dos Gânglios da Base/patologia , Becaplermina , Calcinose/patologia , Expressão Gênica , Testes Genéticos , Células HeLa , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Neurodegenerativas/patologia , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-sis/farmacologia , Análise de Sequência de DNA , Transfecção
6.
Neurology ; 80(11): 1033-40, 2013 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-23408870

RESUMO

OBJECTIVE: Pigmented orthochromatic leukodystrophy (POLD) and hereditary diffuse leukoencephalopathy with axonal spheroids (HDLS) are rare neurodegenerative disorders characterized by cerebral white matter abnormalities, myelin loss, and axonal swellings. The striking overlap of clinical and pathologic features of these disorders suggested a common pathogenesis; however, no genetic or mechanistic link between POLD and HDLS has been established. Recently, we reported that mutations in the colony-stimulating factor 1 receptor (CSF1R) gene cause HDLS. In this study, we determined whether CSF1R mutations are also a cause of POLD. METHODS: We performed sequencing of CSF1R in 2 pathologically confirmed POLD families. For the largest family (FTD368), a detailed case report was provided and brain samples from 2 affected family members previously diagnosed with POLD were re-evaluated to determine whether they had HDLS features. In vitro functional characterization of wild-type and mutant CSF1R was also performed. RESULTS: We identified CSF1R mutations in both POLD families: in family 5901, we found c.2297T>C (p.M766T), previously reported by us in HDLS family CA1, and in family FTD368, we identified c.2345G>A (p.R782H), recently reported in a biopsy-proven HDLS case. Immunohistochemical examination in family FTD368 showed the typical neuronal and glial findings of HDLS. Functional analyses of CSF1R mutant p.R782H (identified in this study) and p.M875T (previously observed in HDLS), showed a similar loss of CSF1R autophosphorylation of selected tyrosine residues in the kinase domain for both mutations when compared with wild-type CSF1R. CONCLUSIONS: We provide the first genetic and mechanistic evidence that POLD and HDLS are a single clinicopathologic entity.


Assuntos
Ligação Genética/genética , Leucodistrofia de Células Globoides/genética , Leucoencefalopatias/genética , Transtornos da Pigmentação/genética , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Feminino , Células HeLa , Humanos , Leucodistrofia de Células Globoides/diagnóstico , Leucoencefalopatias/diagnóstico , Pessoa de Meia-Idade , Mutação , Transtornos da Pigmentação/diagnóstico
7.
Neurobiol Aging ; 33(2): 424.e23-4, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21074900

RESUMO

Insertion and deletion variants (indels) within poly glycine tracts of fused in sarcoma (FUS) were initially reported as causative of disease in amyotrophic lateral sclerosis (ALS). Subsequent studies identified similar indels in controls and suggested that these indels may confer susceptibility to ALS. We aimed to elucidate the role of previously published and novel exonic indels in FUS in an extensive cohort of 630 ALS patients and 1063 controls. We detected indels in FUS exons 5, 6, 12, and 14 with similar frequencies in patients (0.95%) and controls (0.75%). Exonic indels in poly glycine tracts were also observed with similar frequencies. The largest indel (p.Gly138_Tyr143del) was observed in 1 control. In 1 patient, a 3 base pair deletion in exon 14 (p.Gly475del) was identified, however in vitro studies did not reveal abnormal localization of p.Gly475del mutant FUS. These findings suggest that not all exonic indels in FUS cause disease.


Assuntos
Esclerose Lateral Amiotrófica/genética , Éxons/genética , Predisposição Genética para Doença/genética , Mutação INDEL/genética , Peptídeos/genética , Proteína FUS de Ligação a RNA/genética , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/epidemiologia , Feminino , Predisposição Genética para Doença/epidemiologia , Humanos , Masculino , Prevalência , Reprodutibilidade dos Testes , Medição de Risco , Fatores de Risco , Sensibilidade e Especificidade , Estados Unidos/epidemiologia
8.
PLoS Genet ; 4(9): e1000193, 2008 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-18802454

RESUMO

The TAR DNA-binding protein 43 (TDP-43) has been identified as the major disease protein in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration with ubiquitin inclusions (FTLD-U), defining a novel class of neurodegenerative conditions: the TDP-43 proteinopathies. The first pathogenic mutations in the gene encoding TDP-43 (TARDBP) were recently reported in familial and sporadic ALS patients, supporting a direct role for TDP-43 in neurodegeneration. In this study, we report the identification and functional analyses of two novel and one known mutation in TARDBP that we identified as a result of extensive mutation analyses in a cohort of 296 patients with variable neurodegenerative diseases associated with TDP-43 histopathology. Three different heterozygous missense mutations in exon 6 of TARDBP (p.M337V, p.N345K, and p.I383V) were identified in the analysis of 92 familial ALS patients (3.3%), while no mutations were detected in 24 patients with sporadic ALS or 180 patients with other TDP-43-positive neurodegenerative diseases. The presence of p.M337V, p.N345K, and p.I383V was excluded in 825 controls and 652 additional sporadic ALS patients. All three mutations affect highly conserved amino acid residues in the C-terminal part of TDP-43 known to be involved in protein-protein interactions. Biochemical analysis of TDP-43 in ALS patient cell lines revealed a substantial increase in caspase cleaved fragments, including the approximately 25 kDa fragment, compared to control cell lines. Our findings support TARDBP mutations as a cause of ALS. Based on the specific C-terminal location of the mutations and the accumulation of a smaller C-terminal fragment, we speculate that TARDBP mutations may cause a toxic gain of function through novel protein interactions or intracellular accumulation of TDP-43 fragments leading to apoptosis.


Assuntos
Esclerose Lateral Amiotrófica/genética , Proteínas de Ligação a DNA/genética , Mutação de Sentido Incorreto , Adulto , Idoso , Idoso de 80 Anos ou mais , Alelos , Esclerose Lateral Amiotrófica/metabolismo , Linhagem Celular Tumoral , Estudos de Coortes , Análise Mutacional de DNA , Proteínas de Ligação a DNA/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Linhagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA