Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Immunol ; 212(11): 1706-1713, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38619286

RESUMO

Mucosal-Associated Invariant T (MAIT) cells are a population of innate T cells that play a critical role in host protection against bacterial and viral pathogens. Upon activation, MAIT cells can rapidly respond via both TCR-dependent and -independent mechanisms, resulting in robust cytokine production. The metabolic and nutritional requirements for optimal MAIT cell effector responses are still emerging. Iron is an important micronutrient and is essential for cellular fitness, in particular cellular metabolism. Iron is also critical for many pathogenic microbes, including those that activate MAIT cells. However, iron has not been investigated with respect to MAIT cell metabolic or functional responses. In this study, we show that human MAIT cells require exogenous iron, transported via CD71 for optimal metabolic activity in MAIT cells, including their production of ATP. We demonstrate that restricting iron availability by either chelating environmental iron or blocking CD71 on MAIT cells results in impaired cytokine production and proliferation. These data collectively highlight the importance of a CD71-iron axis for human MAIT cell metabolism and functionality, an axis that may have implications in conditions where iron availability is limited.


Assuntos
Antígenos CD , Citocinas , Ferro , Ativação Linfocitária , Células T Invariantes Associadas à Mucosa , Receptores da Transferrina , Humanos , Células T Invariantes Associadas à Mucosa/imunologia , Ferro/metabolismo , Receptores da Transferrina/metabolismo , Receptores da Transferrina/imunologia , Antígenos CD/metabolismo , Antígenos CD/imunologia , Ativação Linfocitária/imunologia , Citocinas/metabolismo , Proliferação de Células , Células Cultivadas , Trifosfato de Adenosina/metabolismo
2.
Front Immunol ; 14: 1296355, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38094304

RESUMO

Natural killer (NK) cells are cytotoxic innate immune cells, able to recognize and eliminate virus-infected as well as cancer cells. Metabolic reprogramming is crucial for their activity as they have enhanced energy and nutritional demands for their functions during an infection. Fatty acids (FAs) represent an important source of cellular energy and are essential for proliferation of immune cells. However, the precise role of FAs for NK cells activity in retrovirus infection was unknown. Here we show that activated NK cells increase the expression of the FA uptake receptor CD36 and subsequently the uptake of FAs upon acute virus infection. We found an enhanced flexibility of NK cells to utilize FAs as source of energy compare to naïve NK cells. NK cells that were able to generate energy from FAs showed an augmented target cell killing and increased expression of cytotoxic parameters. However, NK cells that were unable to generate energy from FAs exhibited a severely decreased migratory capacity. Our results demonstrate that NK cells require FAs in order to fight acute virus infection. Susceptibility to severe virus infections as it is shown for people with malnutrition may be augmented by defects in the FA processing machinery, which might be a target to therapeutically boost NK cell functions in the future.


Assuntos
Infecções por Retroviridae , Retroviridae , Humanos , Ácidos Graxos , Células Matadoras Naturais
3.
Cell Rep ; 42(8): 112828, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37478011

RESUMO

System-level analysis of single-cell data is rapidly transforming the field of immunometabolism. Given the competitive demand for nutrients in immune microenvironments, there is a need to understand how and when immune cells access these nutrients. Here, we describe a new approach for single-cell analysis of nutrient uptake where we use in-cell biorthogonal labeling of a functionalized amino acid after transport into the cell. In this manner, the bona fide active uptake of glutamine via SLC1A5/ASCT2 could be quantified. We used this assay to interrogate the transport capacity of complex immune subpopulations, both in vitro and in vivo. Taken together, our findings provide an easy sensitive single-cell assay to assess which cells support their function via SLC1A5-mediated uptake. This is a significant addition to the single-cell metabolic toolbox required to decode the metabolic landscape of complex immune microenvironments.


Assuntos
Aminoácidos , Glutamina , Glutamina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Transporte Biológico , Aminoácidos/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo
4.
Front Immunol ; 12: 700431, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858390

RESUMO

The transcription factor BMAL1 is a clock protein that generates daily or circadian rhythms in physiological functions including the inflammatory response of macrophages. Intracellular metabolic pathways direct the macrophage inflammatory response, however whether the clock is impacting intracellular metabolism to direct this response is unclear. Specific metabolic reprogramming of macrophages controls the production of the potent pro-inflammatory cytokine IL-1ß. We now describe that the macrophage molecular clock, through Bmal1, regulates the uptake of glucose, its flux through glycolysis and the Krebs cycle, including the production of the metabolite succinate to drive Il-1ß production. We further demonstrate that BMAL1 modulates the level and localisation of the glycolytic enzyme PKM2, which in turn activates STAT3 to further drive Il-1ß mRNA expression. Overall, this work demonstrates that BMAL1 is a key metabolic sensor in macrophages, and its deficiency leads to a metabolic shift of enhanced glycolysis and mitochondrial respiration, leading to a heightened pro-inflammatory state. These data provide insight into the control of macrophage driven inflammation by the molecular clock, and the potential for time-based therapeutics against a range of chronic inflammatory diseases.


Assuntos
Fatores de Transcrição ARNTL/metabolismo , Inflamação/imunologia , Interleucina-1beta/metabolismo , Macrófagos/fisiologia , RNA Mensageiro/genética , Fatores de Transcrição ARNTL/genética , Animais , Relógios Circadianos , Glucose/metabolismo , Glicólise , Humanos , Interleucina-1beta/genética , Camundongos , Camundongos Knockout , Terapia de Alvo Molecular , Piruvato Quinase/metabolismo , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
5.
Blood Adv ; 5(21): 4447-4455, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34607345

RESUMO

Natural killer (NK) cells are a population of innate immune cells that can rapidly kill cancer cells and produce cytokines such as interferon-γ. A key feature of NK cells is their ability to respond without prior sensitization; however, it is now well established that NK cells can possess memory-like features. After activation with cytokines, NK cells demonstrate enhanced effector functions upon restimulation days or weeks later. This demonstrates that NK cells may be trained to be more effective killers and harnessed as more potent cancer immunotherapy agents. We have previously demonstrated that cellular metabolism is essential for NK cell responses, with NK cells upregulating both glycolysis and oxidative phosphorylation upon cytokine stimulation. Limiting NK cell metabolism results in reduced cytotoxicity and cytokine production. We have also demonstrated that defective NK cell responses in obesity are linked to defective cellular metabolism. In the current study, we investigated if cellular metabolism is required during the initial period of NK cell cytokine training and if NK cells from people with obesity (PWO) can be effectively trained. We show that increased flux through glycolysis and oxidative phosphorylation during the initial cytokine activation period is essential for NK cell training, as is the metabolic signaling factor Srebp. We show that NK cells from PWO, which are metabolically defective, display impaired NK cell training, which may have implications for immunotherapy in this particularly vulnerable group.


Assuntos
Interferon gama , Células Matadoras Naturais , Células Cultivadas , Citocinas , Humanos , Obesidade/terapia
6.
NPJ Vaccines ; 6(1): 117, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34584101

RESUMO

Effective vaccines for human immunodeficiency virus-1 (HIV-1) and hepatitis C virus (HCV) remain a significant challenge for these infectious diseases. Given that the innate immune response is key to controlling the scale and nature of developing adaptive immune responses, targeting natural killer (NK) cells that can promote a T-helper type 1 (Th1)-type immune response through the production of interferon-γ (IFNγ) remains an untapped strategic target for improved vaccination approaches. Here, we investigate metabolic and functional responses of NK cells to simian adenovirus prime and MVA boost vaccination in a cohort of healthy volunteers receiving a dual HCV-HIV-1 vaccine. Early and late timepoints demonstrated metabolic changes that contributed to the sustained proliferation of all NK cells. However, a strong impact of human cytomegalovirus (HCMV) on some metabolic and functional responses in NK cells was observed in HCMV seropositive participants. These changes were not restricted to molecularly defined adaptive NK cells; indeed, canonical NK cells that produced most IFNγ in response to vaccination were equally impacted in individuals with latent HCMV. In summary, NK cells undergo metabolic changes in response to vaccination, and understanding these in the context of HCMV is an important step towards rational vaccine design against a range of human viral pathogens.

7.
Nat Commun ; 12(1): 5376, 2021 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-34508086

RESUMO

Natural killer (NK) cells are important early responders against viral infections. Changes in metabolism are crucial to fuel NK cell responses, and altered metabolism is linked to NK cell dysfunction in obesity and cancer. However, very little is known about the metabolic requirements of NK cells during acute retroviral infection and their importance for antiviral immunity. Here, using the Friend retrovirus mouse model, we show that following infection NK cells increase nutrient uptake, including amino acids and iron, and reprogram their metabolic machinery by increasing glycolysis and mitochondrial metabolism. Specific deletion of the amino acid transporter Slc7a5 has only discrete effects on NK cells, but iron deficiency profoundly impaires NK cell antiviral functions, leading to increased viral loads. Our study thus shows the requirement of nutrients and metabolism for the antiviral activity of NK cells, and has important implications for viral infections associated with altered iron levels such as HIV and SARS-CoV-2.


Assuntos
Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Infecções por Retroviridae/imunologia , Animais , Medula Óssea , COVID-19 , Citocinas , HIV , Infecções por HIV , Transportador 1 de Aminoácidos Neutros Grandes/genética , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias , Retroviridae , Infecções por Retroviridae/virologia , SARS-CoV-2 , Carga Viral
8.
Stem Cell Res Ther ; 12(1): 320, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-34090499

RESUMO

Immunotherapy has ushered in an exciting new era for cancer treatment. The recent discovery and success of immune checkpoint blockade and chimeric antigen receptor (CAR) T cell adoptive cell transfer has raised interest in using other immune cells, including Natural Killer (NK) cells, which might overcome some limitations with CAR T cell therapy. In this review article, we discuss the evidence that cellular metabolism is crucial for NK cell effector function. Additionally, potential strategies to optimise the metabolism of therapeutic NK cells for improved function within the metabolically adverse tumour microenvironment will be explored.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia , Imunoterapia Adotiva , Células Matadoras Naturais , Neoplasias/terapia , Microambiente Tumoral
9.
Nat Commun ; 12(1): 1460, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33674584

RESUMO

Mitochondria are important regulators of macrophage polarisation. Here, we show that arginase-2 (Arg2) is a microRNA-155 (miR-155) and interleukin-10 (IL-10) regulated protein localized at the mitochondria in inflammatory macrophages, and is critical for IL-10-induced modulation of mitochondrial dynamics and oxidative respiration. Mechanistically, the catalytic activity and presence of Arg2 at the mitochondria is crucial for oxidative phosphorylation. We further show that Arg2 mediates this process by increasing the activity of complex II (succinate dehydrogenase). Moreover, Arg2 is essential for IL-10-mediated downregulation of the inflammatory mediators succinate, hypoxia inducible factor 1α (HIF-1α) and IL-1ß in vitro. Accordingly, HIF-1α and IL-1ß are highly expressed in an LPS-induced in vivo model of acute inflammation using Arg2-/- mice. These findings shed light on a new arm of IL-10-mediated metabolic regulation, working to resolve the inflammatory status of the cell.


Assuntos
Arginase/metabolismo , Interleucina-10/metabolismo , Macrófagos/metabolismo , Mitocôndrias/metabolismo , Animais , Arginase/genética , Regulação para Baixo , Feminino , Interleucina-1beta/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout/genética , Mitocôndrias/enzimologia , Succinato Desidrogenase/metabolismo
10.
Nat Commun ; 12(1): 1209, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33619282

RESUMO

Fructose intake has increased substantially throughout the developed world and is associated with obesity, type 2 diabetes and non-alcoholic fatty liver disease. Currently, our understanding of the metabolic and mechanistic implications for immune cells, such as monocytes and macrophages, exposed to elevated levels of dietary fructose is limited. Here, we show that fructose reprograms cellular metabolic pathways to favour glutaminolysis and oxidative metabolism, which are required to support increased inflammatory cytokine production in both LPS-treated human monocytes and mouse macrophages. A fructose-dependent increase in mTORC1 activity drives translation of pro-inflammatory cytokines in response to LPS. LPS-stimulated monocytes treated with fructose rely heavily on oxidative metabolism and have reduced flexibility in response to both glycolytic and mitochondrial inhibition, suggesting glycolysis and oxidative metabolism are inextricably coupled in these cells. The physiological implications of fructose exposure are demonstrated in a model of LPS-induced systemic inflammation, with mice exposed to fructose having increased levels of circulating IL-1ß after LPS challenge. Taken together, our work underpins a pro-inflammatory role for dietary fructose in LPS-stimulated mononuclear phagocytes which occurs at the expense of metabolic flexibility.


Assuntos
Frutose/farmacologia , Glutamina/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Ácidos/metabolismo , Animais , Ciclo do Ácido Cítrico/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Glucose/farmacologia , Glicólise/efeitos dos fármacos , Marcação por Isótopo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Análise do Fluxo Metabólico , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Oxirredução , Fosforilação Oxidativa/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Fenótipo , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
11.
J Immunother Cancer ; 9(2)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33568351

RESUMO

BACKGROUND: Natural killer (NK) cells provide important immune protection from cancer and are a key requirement for particular immunotherapies. There is accumulating evidence that NK cells become dysfunctional during cancer. Overcoming NK cell exhaustion would be an important step to allow them to function optimally in a range of NK cell therapies, including those that depend on autologos circulating NK cells. We have previously demonstrated that NK cells undergo a normal metabolic reprogramming in response to cytokine activation and that this is required for optimal function. The objective of this work was to investigate if cellular metabolism of circulating NK cells is dysregulated in patients with metastatic breast cancer and if so, to gain insights into potential mechanisms underpinning this. Such discoveries would provide important insights into how to unleash the full activity of NK cells for maximum immunotherapy output. METHODS: Single-cell analysis, metabolic flux and confocal analysis of NK cells from patients with metastatic breast cancer and healthy controls RESULTS: In addition to reduced interferon-γ production and cytotoxicity, peripheral blood NK cells from patients had clear metabolic deficits including reduced glycolysis and oxidative phosphorylation. There were also distinct morphologically alterations in the mitochondria with increased mitochondrial fragmentation observed. Transforminggrowth factor-ß (TGFß) was identified as a key driver of this phenotype as blocking its activity reversed many metabolic and functional readouts. Expression of glycoprotein-A repetitions predominant (GARP) and latency associated peptide (LAP), which are involved with a novel TGFß processing pathway, was increased on NK cells from some patients. Blocking the GARP-TGFß axis recapitulated the effects of TGFß neutralization, highlighting GARP as a novel NK cell immunotherapy target for the first time. CONCLUSIONS: TGFß contributes to metabolic dysfunction of circulating NK cells in patients with metastatic breast cancer. Blocking TGFß and/or GARP can restore NK cell metabolism and function and is an important target for improving NK cell-based immunotherapies.


Assuntos
Neoplasias da Mama/metabolismo , Metabolismo Energético , Células Matadoras Naturais/metabolismo , Mitocôndrias/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Estudos de Casos e Controles , Técnicas de Cocultura , Citotoxicidade Imunológica , Feminino , Glicólise , Humanos , Interferon gama/metabolismo , Células K562 , Células Matadoras Naturais/imunologia , Proteínas de Membrana , Microscopia Confocal , Pessoa de Meia-Idade , Mitocôndrias/imunologia , Metástase Neoplásica , Fosforilação Oxidativa , Transdução de Sinais , Análise de Célula Única , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
12.
Eur J Immunol ; 51(1): 91-102, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32946110

RESUMO

Cellular metabolism is dynamically regulated in NK cells and strongly influences their responses. Metabolic dysfunction is linked to defective NK cell responses in diseases such as obesity and cancer. The transcription factors, sterol regulatory element binding protein (SREBP) and cMyc, are crucial for controlling NK cell metabolic and functional responses, though the mechanisms involved are not fully understood. This study reveals a new role for SREBP in NK cells in supporting de novo polyamine synthesis through facilitating elevated cMyc expression. Polyamines have diverse roles and their de novo synthesis is required for NK cell glycolytic and oxidative metabolism and to support optimal NK cell effector functions. When NK cells with impaired SREBP activity were supplemented with exogenous polyamines, NK cell metabolic defects were not rescued but these NK cells displayed significant improvement in some effector functions. One role for polyamines is in the control of protein translation where spermidine supports the posttranslational hypusination of translation factor eIF5a. Pharmacological inhibition of hypusination also impacts upon NK cell metabolism and effector function. Considering recent evidence that cholesterol-rich tumor microenvironments inhibit SREBP activation and drive lymphocyte dysfunction, this study provides key mechanistic insight into this tumor-evasion strategy.


Assuntos
Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Poliaminas/metabolismo , Animais , Células Cultivadas , Feminino , Glicólise , Células Matadoras Naturais/efeitos dos fármacos , Lisina/análogos & derivados , Lisina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação Oxidativa , Fatores de Iniciação de Peptídeos/metabolismo , Poliaminas/farmacologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a Elemento Regulador de Esterol/deficiência , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo , Fator de Iniciação de Tradução Eucariótico 5A
13.
Metabolites ; 10(10)2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998240

RESUMO

Intermediates of both cholesterol synthesis and cholesterol metabolism can have diverse roles in the control of cellular processes that go beyond the control of cholesterol homeostasis. For example, oxidized forms of cholesterol, called oxysterols have functions ranging from the control of gene expression, signal transduction and cell migration. This is of particular interest in the context of immunology and immunometabolism where we now know that metabolic processes are key towards shaping the nature of immune responses. Equally, aberrant metabolic processes including altered cholesterol homeostasis contribute to immune dysregulation and dysfunction in pathological situations. This review article brings together our current understanding of how oxysterols affect the control of immune responses in diverse immunological settings.

14.
Elife ; 92020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32812866

RESUMO

Natural Killer (NK) cells have an important role in immune responses to viruses and tumours. Integrating changes in signal transduction pathways and cellular metabolism is essential for effective NK cells responses. The glycolytic enzyme Pyruvate Kinase Muscle 2 (PKM2) has described roles in regulating glycolytic flux and signal transduction, particularly gene transcription. While PKM2 expression is robustly induced in activated NK cells, mice lacking PKM2 in NK cells showed no defect in NK cell metabolism, transcription or antiviral responses to MCMV infection. NK cell metabolism was maintained due to compensatory PKM1 expression in PKM2-null NK cells. To further investigate the role of PKM2, we used TEPP-46, which increases PKM2 catalytic activity while inhibiting any PKM2 signalling functions. NK cells activated with TEPP-46 had reduced effector function due to TEPP-46-induced increases in oxidative stress. Overall, PKM2-regulated glycolytic metabolism and redox status, not transcriptional control, facilitate optimal NK cells responses.


Assuntos
Regulação da Expressão Gênica , Glicólise , Células Matadoras Naturais/metabolismo , Piruvato Quinase , Animais , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Glicólise/efeitos dos fármacos , Glicólise/genética , Camundongos , Estresse Oxidativo , Piridazinas/farmacologia , Pirróis/farmacologia , Piruvato Quinase/antagonistas & inibidores , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , Transdução de Sinais
15.
Immunometabolism ; 1: e190014, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31595191

RESUMO

Natural Killer (NK) cells are lymphocytes with an important role in anti-tumour responses. NK cells bridge the innate and adaptive arms of the immune system; they are primed for immediate anti-tumour function but can also have prolonged actions alongside the adaptive T cell response. However, the key signals and cellular processes that are required for extended NK cell responses are not fully known. Herein we show that murine NK cell interaction with tumour cells induces the expression of CD25, the high affinity IL2 receptor, rendering these NK cells highly sensitive to the T cell-derived cytokine IL2. In response to IL2, CD25high NK cells show robust increases in metabolic signalling pathways (mTORC1, cMyc), nutrient transporter expression (CD71, CD98), cellular growth and in NK cell effector functions (IFNγ, granzyme B). Specific ligation of an individual activating NK cell receptor, NK1.1, showed similar increases in CD25 expression and IL2-induced responses. NK cell receptor ligation and IL2 collaborate to induce mTORC1/cMyc signalling leading to high rates of glycolysis and oxidative phosphorylation (OXPHOS) and prolonged NK cell survival. Disrupting mTORC1 and cMyc signalling in CD25high tumour interacting NK cells prevents IL2-induced cell growth and function and compromises NK cell viability. This study reveals that tumour cell interactions and T cell-derived IL2 cooperate to promote robust and prolonged NK cell anti-tumour metabolic responses.

16.
Nat Commun ; 10(1): 2042, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-31053703

RESUMO

Metabolic pathways that regulate T-cell function show promise as therapeutic targets in diverse diseases. Here, we show that at rest cultured human effector memory and central memory CD4+ T-cells have elevated levels of glycolysis and oxidative phosphorylation (OXPHOS), in comparison to naïve T-cells. Despite having low resting metabolic rates, naive T-cells respond to TCR stimulation with robust and rapid increases in glycolysis and OXPHOS. This early metabolic switch requires Akt activity to support increased rates of glycolysis and STAT5 activity for amino acid biosynthesis and TCA cycle anaplerosis. Importantly, both STAT5 inhibition and disruption of TCA cycle anaplerosis are associated with reduced IL-2 production, demonstrating the functional importance of this early metabolic program. Our results define STAT5 as a key node in modulating the early metabolic program following activation in naive CD4+ T-cells and in turn provide greater understanding of how cellular metabolism shapes T-cell responses.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Fator de Transcrição STAT5/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Ciclo do Ácido Cítrico/imunologia , Glicólise/imunologia , Voluntários Saudáveis , Humanos , Memória Imunológica , Ativação Linfocitária , Fosforilação Oxidativa , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Fator de Transcrição STAT5/imunologia
17.
Nat Rev Immunol ; 19(5): 282-290, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30808985

RESUMO

Natural killer (NK) cells are lymphocytes with important roles in innate and adaptive immune responses to tumours and viral infection. However, in certain chronic diseases, including obesity and cancer, NK cell functional responses are impaired. Recently, research has highlighted the importance of NK cell metabolism in facilitating robust NK cell effector functions. This Review describes our current understanding of mouse and human NK cell metabolism and the key signalling pathways that mediate metabolic responses in NK cells. Furthermore, it explores how defects in metabolism can contribute to the generation of dysfunctional NK cells in chronic disease. Finally, the potential for new therapeutic strategies targeting cellular metabolism is discussed.


Assuntos
Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Animais , Doença Crônica , Humanos , Transdução de Sinais/imunologia
18.
Nat Commun ; 9(1): 2341, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29904050

RESUMO

Natural killer (NK) cells are lymphocytes with important anti-tumour functions. Cytokine activation of NK cell glycolysis and oxidative phosphorylation (OXPHOS) are essential for robust NK cell responses. However, the mechanisms leading to this metabolic phenotype are unclear. Here we show that the transcription factor cMyc is essential for IL-2/IL-12-induced metabolic and functional responses in mice. cMyc protein levels are acutely regulated by amino acids; cMyc protein is lost rapidly when glutamine is withdrawn or when system L-amino acid transport is blocked. We identify SLC7A5 as the predominant system L-amino acid transporter in activated NK cells. Unlike other lymphocyte subsets, glutaminolysis and the tricarboxylic acid cycle do not sustain OXPHOS in activated NK cells. Glutamine withdrawal, but not the inhibition of glutaminolysis, results in the loss of cMyc protein, reduced cell growth and impaired NK cell responses. These data identify an essential role for amino acid-controlled cMyc for NK cell metabolism and function.


Assuntos
Aminoácidos/química , Células Matadoras Naturais/citologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Citocinas/metabolismo , Glutamina/química , Quinase 3 da Glicogênio Sintase/metabolismo , Glicólise , Humanos , Células K562 , Células Matadoras Naturais/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Subpopulações de Linfócitos/metabolismo , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação Oxidativa , Proteômica , Ácidos Tricarboxílicos/química
19.
J Immunol ; 200(12): 3934-3941, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29720425

RESUMO

Cytokines stimulate rapid metabolic changes in human NK cells, including increases in both glycolysis and oxidative phosphorylation pathways. However, how these are subsequently regulated is not known. In this study, we demonstrate that TGF-ß can inhibit many of these metabolic changes, including oxidative phosphorylation, glycolytic capacity, and respiratory capacity. TGF-ß also inhibited cytokine-induced expression of the transferrin nutrient receptor CD71. In contrast to a recent report on murine NK cells, TGF-ß-mediated suppression of these metabolic responses did not involve the inhibition of the metabolic regulator mTORC1. Inhibition of the canonical TGF-ß signaling pathway was able to restore almost all metabolic and functional responses that were inhibited by TGF-ß. These data suggest that pharmacological inhibition of TGF-ß could provide a metabolic advantage to NK cells that is likely to result in improved functional responses. This has important implications for NK cell-based cancer immunotherapies.


Assuntos
Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Transdução de Sinais/imunologia , Fator de Crescimento Transformador beta/imunologia , Fator de Crescimento Transformador beta/metabolismo , Células Cultivadas , Citocinas/imunologia , Citocinas/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/imunologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosforilação Oxidativa
20.
JCI Insight ; 2(24)2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29263296

RESUMO

Childhood obesity is a major global concern, with over 50 million children now classified as obese. Obesity has been linked to the development of numerous chronic inflammatory diseases, including type 2 diabetes and multiple cancers. NK cells are a subset of innate effector cells, which play an important role in the regulation of adipose tissue and antitumor immunity. NK cells can spontaneously kill transformed cells and coordinate subsequent immune responses through their production of cytokines. We investigated the effect of obesity on NK cells in a cohort of obese children, compared to children with a healthy weight. We demonstrated a reduction in peripheral NK cell frequencies in childhood obesity and inverse correlations with body mass index and insulin resistance. Compared with NK cells from children with normal weight, we show increased NK cell activation and metabolism in obese children (PD-1, mTOR activation, ECAR, and mitochondrial ROS), along with a reduced capacity to respond to stimulus, ultimately leading to loss of function (proliferation and tumor lysis). Collectively we show that NK cells from obese children are activated, metabolically stressed, and losing the ability to perform their basic duties. Paired with the reduction in NK cell frequencies in childhood obesity, this suggests that the negative effect on antitumor immunity is present early in the life course of obesity and certainly many years before the development of overt malignancies.


Assuntos
Células Matadoras Naturais/imunologia , Obesidade Infantil/imunologia , Adolescente , Índice de Massa Corporal , Criança , Citotoxicidade Imunológica , Feminino , Humanos , Resistência à Insulina/imunologia , Células K562/imunologia , Ativação Linfocitária/imunologia , Contagem de Linfócitos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA