Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(2): 234-245, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27845246

RESUMO

Palmitate triggers inflammatory responses in several cell types, but its effects on cardiac fibroblasts are at present unknown. The aims of the study were to (1) assess the potential of palmitate to promote inflammatory signaling in cardiac fibroblasts through TLR4 and the NLRP3 inflammasome and (2) characterize the cellular phenotype of cardiac fibroblasts exposed to palmitate. We examined whether palmitate induces inflammatory responses in cardiac fibroblasts from WT, NLRP3-/- and ASC-/-mice (C57BL/6 background). Exposure to palmitate caused production of TNF, IL-6 and CXCL2 via TLR4 activation. NLRP3 inflammasomes are activated in a two-step manner. Whereas palmitate did not prime the NLRP3 inflammasome, it induced activation in LPS-primed cardiac fibroblasts as indicated by IL-1ß, IL-18 production and NLRP3-ASC co-localization. Palmitate-induced NLRP3 inflammasome activation in LPS-primed cardiac fibroblasts was associated with reduced AMPK activity, mitochondrial reactive oxygen species production and mitochondrial dysfunction. The cardiac fibroblast phenotype caused by palmitate, in an LPS and NLRP3 independent manner, was characterized by decreased cellular proliferation, contractility, collagen and MMP-2 expression, as well as increased senescence-associated ß-galactosidase activity, and consistent with a state of cellular senescence. This study establishes that in vitro palmitate exposure of cardiac fibroblasts provides inflammatory responses via TLR4 and NLRP3 inflammasome activation. Palmitate also modulates cardiac fibroblast functionality, in a NLRP3 independent manner, resulting in a phenotype related to cellular senescence. These effects of palmitate could be of importance for myocardial dysfunction in obese and diabetic patients.


Assuntos
Senescência Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Coração/efeitos dos fármacos , Inflamação/induzido quimicamente , Palmitatos/farmacologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Quimiocina CXCL2/metabolismo , Fibroblastos/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , beta-Galactosidase/metabolismo
2.
PLoS One ; 9(11): e112172, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25398010

RESUMO

BACKGROUND: CCL21 acting through CCR7, is termed a homeostatic chemokine. Based on its role in concerting immunological responses and its proposed involvement in tissue remodeling, we hypothesized that this chemokine could play a role in myocardial remodeling during left ventricular (LV) pressure overload. METHODS AND RESULTS: Our main findings were: (i) Serum levels of CCL21 were markedly raised in patients with symptomatic aortic stenosis (AS, n = 136) as compared with healthy controls (n = 20). (ii) A CCL21 level in the highest tertile was independently associated with all-cause mortality in these patients. (iii) Immunostaining suggested the presence of CCR7 on macrophages, endothelial cells and fibroblasts within calcified human aortic valves. (iv). Mice exposed to LV pressure overload showed enhanced myocardial expression of CCL21 and CCR7 mRNA, and increased CCL21 protein levels. (v) CCR7-/- mice subjected to three weeks of LV pressure overload had similar heart weights compared to wild type mice, but increased LV dilatation and reduced wall thickness. CONCLUSIONS: Our studies, combining experiments in clinical and experimental LV pressure overload, suggest that CCL21/CCR7 interactions might be involved in the response to pressure overload secondary to AS.


Assuntos
Estenose da Valva Aórtica/mortalidade , Estenose da Valva Aórtica/fisiopatologia , Quimiocina CCL21/sangue , Homeostase , Remodelação Ventricular , Idoso , Animais , Valva Aórtica/metabolismo , Valva Aórtica/patologia , Estenose da Valva Aórtica/sangue , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/metabolismo , Calcinose/sangue , Calcinose/metabolismo , Colágeno/metabolismo , Dilatação Patológica , Eletrocardiografia , Feminino , Humanos , Imuno-Histoquímica , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Miocárdio/enzimologia , Miocárdio/patologia , Pressão , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores CCR7/genética , Receptores CCR7/metabolismo
3.
PLoS One ; 9(8): e104398, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25126740

RESUMO

Altered cardiac Toll-like receptor 9 (TLR9) signaling is important in several experimental cardiovascular disorders. These studies have predominantly focused on cardiac myocytes or the heart as a whole. Cardiac fibroblasts have recently been attributed increasing significance in mediating inflammatory signaling. However, putative TLR9-signaling through cardiac fibroblasts remains non-investigated. Thus, our aim was to explore TLR9-signaling in cardiac fibroblasts and investigate the consequence of such receptor activity on classical cardiac fibroblast cellular functions. Cultivated murine cardiac fibroblasts were stimulated with different TLR9 agonists (CpG A, B and C) and assayed for the secretion of inflammatory cytokines (tumor necrosis factor α [TNFα], CXCL2 and interferon α/ß). Expression of functional cardiac fibroblast TLR9 was proven as stimulation with CpG B and -C caused significant CXCL2 and TNFα-release. These responses were TLR9-specific as complete inhibition of receptor-stimulated responses was achieved by co-treatment with a TLR9-antagonist (ODN 2088) or chloroquine diphosphate. TLR9-stimulated responses were also found more potent in cardiac fibroblasts when compared with classical innate immune cells. Stimulation of cardiac fibroblasts TLR9 was also found to attenuate migration and proliferation, but did not influence myofibroblast differentiation in vitro. Finally, results from in vivo TLR9-stimulation with subsequent fractionation of specific cardiac cell-types (cardiac myocytes, CD45+ cells, CD31+ cells and cardiac fibroblast-enriched cell-fractions) corroborated our in vitro data and provided evidence of differentiated cell-specific cardiac responses. Thus, we conclude that cardiac fibroblast may constitute a significant TLR9 responder cell within the myocardium and, further, that such receptor activity may impact important cardiac fibroblast cellular functions.


Assuntos
Fibroblastos/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo , Receptor Toll-Like 9/metabolismo , Animais , Citocinas/metabolismo , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Feminino , Fibroblastos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos , Oligonucleotídeos/farmacologia , Transdução de Sinais
4.
Physiol Genomics ; 16(3): 301-8, 2004 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-14625378

RESUMO

The purpose of this study was to identify essential genes involved in myocardial growth and remodeling following myocardial infarction (MI). Left ventricular noninfarcted tissues from six mice subjected to MI under general anesthesia and from six sham-operated mice were obtained 1 wk after primary surgery and analyzed by means of cDNA filter arrays. Out of a total of 1,176 genes, 641 were consistently expressed, twenty-three were upregulated and thirteen downregulated. Five genes were only expressed following MI. Syndecan-3, a transmembranous heparan sulfate proteoglycan, was found to be upregulated together with a transcriptional activator of syndecans, Wilms tumor protein 1 (WT-1). Northern blotting demonstrated a significant upregulation of syndecan-1, -2, -3, and -4, WT-1, fibronectin, and basic fibroblast growth factor (FGF) receptor 1. Furthermore, Western blot analysis showed statistically significant increases in protein levels for syndecan-3 and -4. In conclusion, we have identified a subset of genes with increased expression in noninfarcted left ventricular tissue following MI, including syndecans 1-4, WT-1, fibronectin, collagen 6A, and FGF receptor 1. Since the syndecans link the cytoskeleton to the extracellular matrix and function as required coreceptors for FGF, we suggest a role for the syndecans in cardiac remodeling following MI.


Assuntos
Perfilação da Expressão Gênica , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Infarto do Miocárdio , Proteoglicanas/genética , Proteoglicanas/metabolismo , Regulação para Cima , Remodelação Ventricular/genética , Animais , Western Blotting , Peso Corporal , Coração , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Análise de Sequência com Séries de Oligonucleotídeos , Tamanho do Órgão , RNA Mensageiro/análise , RNA Mensageiro/genética , Sindecana-1 , Sindecanas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA