Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Semin Cancer Biol ; 99: 24-44, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309540

RESUMO

Autophagy, a self-degradative process vital for cellular homeostasis, plays a significant role in adipose tissue metabolism and tumorigenesis. This review aims to elucidate the complex interplay between autophagy, obesity, and cancer development, with a specific emphasis on how obesity-driven changes affect the regulation of autophagy and subsequent implications for cancer risk. The burgeoning epidemic of obesity underscores the relevance of this research, particularly given the established links between obesity, autophagy, and various cancers. Our exploration delves into hormonal influence, notably INS (insulin) and LEP (leptin), on obesity and autophagy interactions. Further, we draw attention to the latest findings on molecular factors linking obesity to cancer, including hormonal changes, altered metabolism, and secretory autophagy. We posit that targeting autophagy modulation may offer a potent therapeutic approach for obesity-associated cancer, pointing to promising advancements in nanocarrier-based targeted therapies for autophagy modulation. However, we also recognize the challenges inherent to these approaches, particularly concerning their precision, control, and the dual roles autophagy can play in cancer. Future research directions include identifying novel biomarkers, refining targeted therapies, and harmonizing these approaches with precision medicine principles, thereby contributing to a more personalized, effective treatment paradigm for obesity-mediated cancer.


Assuntos
Neoplasias , Obesidade , Humanos , Obesidade/complicações , Obesidade/metabolismo , Tecido Adiposo/metabolismo , Resultado do Tratamento , Autofagia/fisiologia , Neoplasias/etiologia , Neoplasias/metabolismo
2.
Eur J Immunol ; 53(12): e2350529, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37741290

RESUMO

TDC are hematopoietic cells that combine dendritic cell (DC) and conventional T-cell markers and functional properties. They were identified in secondary lymphoid organs (SLOs) of naïve mice as cells expressing CD11c, major histocompatibility molecules (MHC)-II, and the T-cell receptor (TCR). Despite thorough characterization, a physiological role for TDC remains to be determined. Unfortunately, using CD11c as a marker for TDC has the caveat of its upregulation on different cells, including T cells, upon activation. Here, we took advantage of Zbtb46-GFP reporter mice to explore the frequency and localization of TDC in different tissues at steady state and upon viral infection. RNA sequencing analysis confirmed that TDC sorted from Zbtb46-GFP mice have a gene signature that is distinct from conventional T cells and DC. In addition, this reporter model allowed for identification of TDC in situ not only in SLOs but also in the liver and lung of naïve mice. Interestingly, we found that TDC numbers in the SLOs increased upon viral infection, suggesting that TDC might play a role during viral infections. In conclusion, we propose a visualization strategy that might shed light on the physiological role of TDC in several pathological contexts, including infection and cancer.


Assuntos
Linfócitos T , Viroses , Camundongos , Animais , Células Dendríticas/patologia , Antígeno CD11c , Camundongos Endogâmicos C57BL
3.
Antioxidants (Basel) ; 12(7)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37507910

RESUMO

Hyperforin (HPF) is an acylphloroglucinol compound found abundantly in Hypericum perforatum extract which exhibits antidepressant, anti-inflammatory, antimicrobial, and antitumor activities. Our recent study revealed a potent antimelanoma effect of HPF, which hinders melanoma cell proliferation, motility, colony formation, and induces apoptosis. Furthermore, we have identified glutathione peroxidase-4 (GPX-4), a key enzyme involved in cellular protection against iron-induced lipid peroxidation, as one of the molecular targets of HPF. Thus, in three BRAF-mutated melanoma cell lines, we investigated whether iron unbalance and lipid peroxidation may be a part of the molecular mechanisms underlying the antimelanoma activity of HPF. Initially, we focused on heme oxygenase-1 (HO-1), which catalyzes the heme group into CO, biliverdin, and free iron, and observed that HPF treatment triggered the expression of this inducible enzyme. In order to investigate the mechanism involved in HO-1 induction, we verified that HPF downregulates the BTB and CNC homology 1 (BACH-1) transcription factor, an inhibitor of the heme oxygenase 1 (HMOX-1) gene transcription. Remarkably, we observed a partial recovery of cell viability and an increase in the expression of the phosphorylated and active form of retinoblastoma protein when we suppressed the HMOX-1 gene using HMOX-1 siRNA while HPF was present. This suggests that the HO-1 pathway is involved in the cytostatic effect of HPF in melanoma cells. To explore whether lipid peroxidation is induced, we conducted cytofluorimetric analysis and observed a significant increase in the fluorescence of the BODIPY C-11 probe 48 h after HPF administration in all tested melanoma cell lines. To discover the mechanism by which HPF triggers lipid peroxidation, along with the induction of HO-1, we examined the expression of additional proteins associated with iron homeostasis and lipid peroxidation. After HPF administration, we confirmed the downregulation of GPX-4 and observed low expression levels of SLC7A11, a cystine transporter crucial for the glutathione production, and ferritin, able to sequester free iron. A decreased expression level of these proteins can sensitize cells to lipid peroxidation. On the other hand, HPF treatment resulted in increased expression levels of transferrin, which facilitates iron uptake, and LC3B proteins, a molecular marker of autophagy induction. Indeed, ferritin and GPX-4 have been reported to be digested during autophagy. Altogether, these findings suggest that HPF induced lipid peroxidation likely through iron overloading and decreasing the expression of proteins that protect cells from lipid peroxidation. Finally, we examined the expression levels of proteins associated with melanoma cell invasion and metastatic potential. We observed the decreased expression of CD133, octamer-4, tyrosine-kinase receptor AXL, urokinase plasminogen activator receptor, and metalloproteinase-2 following HPF treatment. These findings provide further support for our previous observations, demonstrating the inhibitory effects of HPF on cell motility and colony formation in soft agar, which are both metastasis-related processes in tumor cells.

4.
Signal Transduct Target Ther ; 8(1): 137, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949046

RESUMO

Tumour cells have exquisite flexibility in reprogramming their metabolism in order to support tumour initiation, progression, metastasis and resistance to therapies. These reprogrammed activities include a complete rewiring of the bioenergetic, biosynthetic and redox status to sustain the increased energetic demand of the cells. Over the last decades, the cancer metabolism field has seen an explosion of new biochemical technologies giving more tools than ever before to navigate this complexity. Within a cell or a tissue, the metabolites constitute the direct signature of the molecular phenotype and thus their profiling has concrete clinical applications in oncology. Metabolomics and fluxomics, are key technological approaches that mainly revolutionized the field enabling researchers to have both a qualitative and mechanistic model of the biochemical activities in cancer. Furthermore, the upgrade from bulk to single-cell analysis technologies provided unprecedented opportunity to investigate cancer biology at cellular resolution allowing an in depth quantitative analysis of complex and heterogenous diseases. More recently, the advent of functional genomic screening allowed the identification of molecular pathways, cellular processes, biomarkers and novel therapeutic targets that in concert with other technologies allow patient stratification and identification of new treatment regimens. This review is intended to be a guide for researchers to cancer metabolism, highlighting current and emerging technologies, emphasizing advantages, disadvantages and applications with the potential of leading the development of innovative anti-cancer therapies.


Assuntos
Metabolômica , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Metabolismo Energético , Biomarcadores
5.
J Biol Chem ; 298(12): 102629, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36273589

RESUMO

mTORC1 and GCN2 are serine/threonine kinases that control how cells adapt to amino acid availability. mTORC1 responds to amino acids to promote translation and cell growth while GCN2 senses limiting amino acids to hinder translation via eIF2α phosphorylation. GCN2 is an appealing target for cancer therapies because malignant cells can harness the GCN2 pathway to temper the rate of translation during rapid amino acid consumption. To isolate new GCN2 inhibitors, we created cell-based, amino acid limitation reporters via genetic manipulation of Ddit3 (encoding the transcription factor CHOP). CHOP is strongly induced by limiting amino acids and in this context, GCN2-dependent. Using leucine starvation as a model for essential amino acid sensing, we unexpectedly discovered ATP-competitive PI3 kinase-related kinase inhibitors, including ATR and mTOR inhibitors like torins, completely reversed GCN2 activation in a time-dependent way. Mechanistically, via inhibiting mTORC1-dependent translation, torins increased intracellular leucine, which was sufficient to reverse GCN2 activation and the downstream integrated stress response including stress-induced transcriptional factor ATF4 expression. Strikingly, we found that general translation inhibitors mirrored the effects of torins. Therefore, we propose that mTOR kinase inhibitors concurrently inhibit different branches of amino acid sensing by a dual mechanism involving direct inhibition of mTOR and indirect suppression of GCN2 that are connected by effects on the translation machinery. Collectively, our results highlight distinct ways of regulating GCN2 activity.


Assuntos
Aminoácidos , Proteínas Serina-Treonina Quinases , Transdução de Sinais , Aminoácidos/genética , Aminoácidos/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Leucina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosforilação , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Humanos , Animais , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
6.
Cell Mol Life Sci ; 79(5): 226, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35391557

RESUMO

BACKGROUND: The impact of the absence of gravity on cancer cells is of great interest, especially today that space is more accessible than ever. Despite advances, few and contradictory data are available mainly due to different setup, experimental design and time point analyzed. METHODS: Exploiting a Random Positioning Machine, we dissected the effects of long-term exposure to simulated microgravity (SMG) on pancreatic cancer cells performing proteomic, lipidomic and transcriptomic analysis at 1, 7 and 9 days. RESULTS: Our results indicated that SMG affects cellular morphology through a time-dependent activation of Actin-based motility via Rho and Cdc42 pathways leading to actin rearrangement, formation of 3D spheroids and enhancement of epithelial-to-mesenchymal transition. Bioinformatic analysis reveals that SMG may activates ERK5/NF-κB/IL-8 axis that triggers the expansion of cancer stem cells with an increased migratory capability. These cells, to remediate energy stress and apoptosis activation, undergo a metabolic reprogramming orchestrated by HIF-1α and PI3K/Akt pathways that upregulate glycolysis and impair ß-oxidation, suggesting a de novo synthesis of triglycerides for the membrane lipid bilayer formation. CONCLUSIONS: SMG revolutionizes tumor cell behavior and metabolism leading to the acquisition of an aggressive and metastatic stem cell-like phenotype. These results dissect the time-dependent cellular alterations induced by SMG and pave the base for altered gravity conditions as new anti-cancer technology.


Assuntos
Neoplasias Pancreáticas , Ausência de Peso , Actinas , Humanos , Lipidômica , Neoplasias Pancreáticas/genética , Fosfatidilinositol 3-Quinases , Proteômica , Transcriptoma , Simulação de Ausência de Peso/métodos
7.
Mol Cell ; 82(5): 920-932.e7, 2022 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-35245456

RESUMO

IDO1 oxidizes tryptophan (TRP) to generate kynurenine (KYN), the substrate for 1-carbon and NAD metabolism, and is implicated in pro-cancer pathophysiology and infection biology. However, the mechanistic relationships between IDO1 in amino acid depletion versus product generation have remained a longstanding mystery. We found an unrecognized link between IDO1 and cell survival mediated by KYN that serves as the source for molecules that inhibit ferroptotic cell death. We show that this effect requires KYN export from IDO1-expressing cells, which is then available for non-IDO1-expressing cells via SLC7A11, the central transporter involved in ferroptosis suppression. Whether inside the "producer" IDO1+ cell or the "receiver" cell, KYN is converted into downstream metabolites, suppressing ferroptosis by ROS scavenging and activating an NRF2-dependent, AHR-independent cell-protective pathway, including SLC7A11, propagating anti-ferroptotic signaling. IDO1, therefore, controls a multi-pronged protection pathway from ferroptotic cell death, underscoring the need to re-evaluate the use of IDO1 inhibitors in cancer treatment.


Assuntos
Sistema y+ de Transporte de Aminoácidos , Ferroptose , Cinurenina , Neoplasias , Sistema y+ de Transporte de Aminoácidos/genética , Sistema y+ de Transporte de Aminoácidos/metabolismo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Cinurenina/metabolismo , Cinurenina/farmacologia , Neoplasias/metabolismo , Transdução de Sinais , Triptofano/metabolismo
8.
Biomolecules ; 12(2)2022 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-35204804

RESUMO

The study of the cancer secretome is gaining even more importance in cancers such as pancreatic ductal adenocarcinoma (PDAC), whose lack of recognizable symptoms and early detection assays make this type of cancer highly lethal. The wild-type p53 protein, frequently mutated in PDAC, prevents tumorigenesis by regulating a plethora of signaling pathways. The importance of the p53 tumor suppressive activity is not only primarily involved within cells to limit tumor cell proliferation but also in the extracellular space. Thus, loss of p53 has a profound impact on the secretome composition of cancer cells and marks the transition to invasiveness. Here, we demonstrate the tumor suppressive role of wild-type p53 on cancer cell secretome, showing the anti-proliferative, apoptotic and chemosensitivity effects of wild-type p53 driven conditioned medium. By using high-resolution SWATH-MS technology, we characterized the secretomes of p53-deficient and p53-expressing PDAC cells. We found a great number of secreted proteins that have known roles in cancer-related processes, 30 of which showed enhanced and 17 reduced secretion in response to p53 silencing. These results are important to advance our understanding on the link between wt-p53 and cancer microenvironment. In conclusion, this approach may detect a secreted signature specifically driven by wild-type p53 in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Neoplasias Pancreáticas/metabolismo , Proteômica , Secretoma , Microambiente Tumoral , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Neoplasias Pancreáticas
9.
J Immunother Cancer ; 10(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35022194

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest tumors owing to its robust desmoplasia, low immunogenicity, and recruitment of cancer-conditioned, immunoregulatory myeloid cells. These features strongly limit the success of immunotherapy as a single agent, thereby suggesting the need for the development of a multitargeted approach. The goal is to foster T lymphocyte infiltration within the tumor landscape and neutralize cancer-triggered immune suppression, to enhance the therapeutic effectiveness of immune-based treatments, such as anticancer adoptive cell therapy (ACT). METHODS: We examined the contribution of immunosuppressive myeloid cells expressing arginase 1 and nitric oxide synthase 2 in building up a reactive nitrogen species (RNS)-dependent chemical barrier and shaping the PDAC immune landscape. We examined the impact of pharmacological RNS interference on overcoming the recruitment and immunosuppressive activity of tumor-expanded myeloid cells, which render pancreatic cancers resistant to immunotherapy. RESULTS: PDAC progression is marked by a stepwise infiltration of myeloid cells, which enforces a highly immunosuppressive microenvironment through the uncontrolled metabolism of L-arginine by arginase 1 and inducible nitric oxide synthase activity, resulting in the production of large amounts of reactive oxygen and nitrogen species. The extensive accumulation of myeloid suppressing cells and nitrated tyrosines (nitrotyrosine, N-Ty) establishes an RNS-dependent chemical barrier that impairs tumor infiltration by T lymphocytes and restricts the efficacy of adoptive immunotherapy. A pharmacological treatment with AT38 ([3-(aminocarbonyl)furoxan-4-yl]methyl salicylate) reprograms the tumor microenvironment from protumoral to antitumoral, which supports T lymphocyte entrance within the tumor core and aids the efficacy of ACT with telomerase-specific cytotoxic T lymphocytes. CONCLUSIONS: Tumor microenvironment reprogramming by ablating aberrant RNS production bypasses the current limits of immunotherapy in PDAC by overcoming immune resistance.


Assuntos
Adenocarcinoma/imunologia , Carcinoma Ductal Pancreático/imunologia , Imunoterapia/métodos , Estresse Nitrosativo/imunologia , Linfócitos T Citotóxicos/imunologia , Humanos , Microambiente Tumoral
10.
Stem Cell Res Ther ; 12(1): 316, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078447

RESUMO

Coronavirus disease 2019 (COVID-19) may result in a life-threatening condition due to a hyperactive immune reaction to severe acute respiratory syndrome-coronavirus-2 infection, for which no effective treatment is available. Based on the potent immunomodulatory properties of mesenchymal stromal cells (MSCs), a growing number of trials are ongoing. This prompted us to carry out a thorough immunological study in a patient treated with umbilical cord-derived MSCs and admitted to the Intensive Care Unit for COVID-19-related pneumonia. The exploratory analyses were assessed on both peripheral blood and bronchoalveolar fluid lavage samples at baseline and after cellular infusion by means of single-cell RNA sequencing, flow cytometry, ELISA, and functional assays. Remarkably, a normalization of circulating T lymphocytes count paralleled by a reduction of inflammatory myeloid cells, and a decrease in serum levels of pro-inflammatory cytokines, mostly of interleukin-6 and tumor necrosis factor-α, were observed. In addition, a drop of plasma levels of those chemokines essential for neutrophil recruitment became evident that paralleled the decrease of lung-infiltrating inflammatory neutrophils. Finally, circulating monocytes and low-density gradient neutrophils acquired immunosuppressive function. This scenario was accompanied by an amelioration of respiratory, renal, inflammatory, and pro-thrombotic indexes. Our results provide the first immunological data possibly related to the use of umbilical cord-derived MSCs in severe COVID-19 context.


Assuntos
COVID-19 , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Humanos , SARS-CoV-2 , Cordão Umbilical
11.
Elife ; 102021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33646117

RESUMO

Interleukin-4-induced-1 (IL4i1) is an amino acid oxidase secreted from immune cells. Recent observations have suggested that IL4i1 is pro-tumorigenic via unknown mechanisms. As IL4i1 has homologs in snake venoms (L-amino acid oxidases [LAAO]), we used comparative approaches to gain insight into the mechanistic basis of how conserved amino acid oxidases regulate cell fate and function. Using mammalian expressed recombinant proteins, we found that venom LAAO kills cells via hydrogen peroxide generation. By contrast, mammalian IL4i1 is non-cytotoxic and instead elicits a cell protective gene expression program inhibiting ferroptotic redox death by generating indole-3-pyruvate (I3P) from tryptophan. I3P suppresses ferroptosis by direct free radical scavenging and through the activation of an anti-oxidative gene expression program. Thus, the pro-tumor effects of IL4i1 are likely mediated by local anti-ferroptotic pathways via aromatic amino acid metabolism, arguing that an IL4i1 inhibitor may modulate tumor cell death pathways.


Assuntos
Aminoácidos/metabolismo , Ferroptose/efeitos dos fármacos , L-Aminoácido Oxidase/metabolismo , L-Aminoácido Oxidase/toxicidade , Animais , Morte Celular , Linhagem Celular , Linhagem Celular Tumoral , Venenos Elapídicos/enzimologia , Regulação da Expressão Gênica , Humanos , Peróxido de Hidrogênio/metabolismo , Camundongos , Oxirredução
12.
Curr Opin Immunol ; 70: 7-14, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33418116

RESUMO

L-tryptophan is an essential amino acid that undergoes complex metabolic routes, resulting in production of many types of signaling molecules that fall into two types: retaining the indole ring such as serotonin, melatonin and indole-pyruvate or breaking the indole ring to form kynurenine. Kynurenines are the precursor of signaling molecules and are the first step in de novo NAD+ synthesis. In mammalian cells, the kynurenine pathway is initiated by the rate-limiting enzymes tryptophan-2,3-dioxygenase (TDO) and interferon responsive indoleamine 2,3-dioxygenase (IDO1) and is the major route for tryptophan catabolism. IDO1 regulates immune cell function through the kynurenine pathway but also by depleting tryptophan in microenvironments, and especially in tumors, which led to the development of IDO1 inhibitors for cancer therapy. However, the connections between tryptophan depletion versus product supply remain an ongoing challenge in cellular biochemistry and metabolism. Here, we highlight current knowledge about the physiological and pathological roles of tryptophan signaling network with a focus on the immune system.


Assuntos
Indóis/imunologia , Neoplasias/imunologia , Triptofano/imunologia , Humanos , Indóis/metabolismo , Neoplasias/metabolismo , Transdução de Sinais/imunologia , Triptofano/metabolismo
13.
Front Cell Dev Biol ; 8: 308, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32411709

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related mortality among adults in developed countries. The discovery of the most common genetic alterations as well as the development of organoid models of pancreatic cancer have provided insight into the fundamental pathways driving tumor progression from a normal cell to non-invasive precursor lesion and finally to widely metastatic disease, offering new opportunities for identifying the key driver of cancer evolution. Obesity is one of the most serious public health challenges of the 21st century. Several epidemiological studies have shown the positive association between obesity and cancer-related morbidity/mortality, as well as poorer prognosis and treatment outcome. Despite strong evidence indicates a link between obesity and cancer incidence, the molecular basis of the initiating events remains largely elusive. This is mainly due to the lack of an accurate and reliable model of pancreatic carcinogenesis that mimics human obesity-associated PDAC, making data interpretation difficult and often confusing. Here we propose a feasible and manageable organoid-based preclinical tool to study the effects of obesity on pancreatic carcinogenesis. Therefore, we tracked the effects of obesity on the natural evolution of PDAC in a genetically defined transplantable model of the syngeneic murine pancreatic preneoplastic lesion (mP) and tumor (mT) derived-organoids that recapitulates the progression of human disease from early preinvasive lesions to metastatic disease. Our results suggest that organoid-derived transplant in obese mice represents a suitable system to study early steps of pancreatic carcinogenesis and supports the hypothesis that inflammation induced by obesity stimulates tumor progression and metastatization during pancreatic carcinogenesis.

14.
Nat Immunol ; 21(3): 321-330, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32066949

RESUMO

Differentiation of CD4+ T cells into either follicular helper T (TFH) or type 1 helper T (TH1) cells influences the balance between humoral and cellular adaptive immunity, but the mechanisms whereby pathogens elicit distinct effector cells are incompletely understood. Here we analyzed the spatiotemporal dynamics of CD4+ T cells during infection with recombinant vesicular stomatitis virus (VSV), which induces early, potent neutralizing antibodies, or recombinant lymphocytic choriomeningitis virus (LCMV), which induces a vigorous cellular response but inefficient neutralizing antibodies, expressing the same T cell epitope. Early exposure of dendritic cells to type I interferon (IFN), which occurred during infection with VSV, induced production of the cytokine IL-6 and drove TFH cell polarization, whereas late exposure to type I IFN, which occurred during infection with LCMV, did not induce IL-6 and allowed differentiation into TH1 cells. Thus, tight spatiotemporal regulation of type I IFN shapes antiviral CD4+ T cell differentiation and might instruct vaccine design strategies.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Interferon Tipo I/metabolismo , Imunidade Adaptativa , Transferência Adotiva , Animais , Linfócitos T CD4-Positivos/classificação , Diferenciação Celular/imunologia , Feminino , Interleucina-6/biossíntese , Vírus da Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/patogenicidade , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Análise Espaço-Temporal , Linfócitos T Auxiliares-Indutores/imunologia , Células Th1/imunologia , Vírus da Estomatite Vesicular Indiana/imunologia , Vírus da Estomatite Vesicular Indiana/patogenicidade , Vírus da Estomatite Vesicular New Jersey/imunologia , Vírus da Estomatite Vesicular New Jersey/patogenicidade
15.
J Immunother Cancer ; 7(1): 255, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31533831

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a highly devastating disease with an overall 5-year survival rate of less than 8%. New evidence indicates that PDAC cells release pro-inflammatory metabolites that induce a marked alteration of normal hematopoiesis, favoring the expansion and accumulation of myeloid-derived suppressor cells (MDSCs). We report here that PDAC patients show increased levels of both circulating and tumor-infiltrating MDSC-like cells. METHODS: The frequency of MDSC subsets in the peripheral blood was determined by flow cytometry in three independent cohorts of PDAC patients (total analyzed patients, n = 117). Frequency of circulating MDSCs was correlated with overall survival of PDAC patients. We also analyzed the frequency of tumor-infiltrating MDSC and the immune landscape in fresh biopsies. Purified myeloid cell subsets were tested in vitro for their T-cell suppressive capacity. RESULTS: Correlation with clinical data revealed that MDSC frequency was significantly associated with a shorter patients' overall survival and metastatic disease. However, the immunosuppressive activity of purified MDSCs was detectable only in some patients and mainly limited to the monocytic subset. A transcriptome analysis of the immunosuppressive M-MDSCs highlighted a distinct gene signature in which STAT3 was crucial for monocyte re-programming. Suppressive M-MDSCs can be characterized as circulating STAT3/arginase1-expressing CD14+ cells. CONCLUSION: MDSC analysis aids in defining the immune landscape of PDAC patients for a more appropriate diagnosis, stratification and treatment.


Assuntos
Carcinoma Ductal Pancreático/imunologia , Células Supressoras Mieloides/imunologia , Neoplasias Pancreáticas/imunologia , Fator de Transcrição STAT3/metabolismo , Evasão Tumoral , Idoso , Idoso de 80 Anos ou mais , Arginase/imunologia , Arginase/metabolismo , Carcinoma Ductal Pancreático/sangue , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/patologia , Separação Celular , Células Cultivadas , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Humanos , Receptores de Lipopolissacarídeos/imunologia , Receptores de Lipopolissacarídeos/metabolismo , Masculino , Pessoa de Meia-Idade , Células Supressoras Mieloides/metabolismo , Pâncreas/imunologia , Pâncreas/patologia , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Cultura Primária de Células , Prognóstico , Estudos Prospectivos , Fator de Transcrição STAT3/imunologia , Transdução de Sinais/imunologia , Análise de Sobrevida , Microambiente Tumoral/imunologia
16.
Nat Commun ; 9(1): 5193, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30518925

RESUMO

Immunosuppression is a hallmark of tumor progression, and treatments that inhibit or deplete monocytic myeloid-derived suppressive cells could promote anti-tumor immunity. c-FLIP is a central regulator of caspase-8-mediated apoptosis and necroptosis. Here we show that low-dose cytotoxic chemotherapy agents cause apoptosis linked to c-FLIP down-regulation selectively in monocytes. Enforced expression of c-FLIP or viral FLIP rescues monocytes from cytotoxicity and concurrently induces potent immunosuppressive activity, in T cell cultures and in vivo models of tumor progression and immunotherapy. FLIP-transduced human blood monocytes can suppress graft versus host disease. Neither expression of FLIP in granulocytes nor expression of other anti-apoptotic genes in monocytes conferred immunosuppression, suggesting that FLIP effects on immunosuppression are specific to monocytic lineage and distinct from death inhibition. Mechanistically, FLIP controls a broad transcriptional program, partially by NF-κB activation. Therefore, modulation of FLIP in monocytes offers a means to elicit or block immunosuppressive myeloid cells.


Assuntos
Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/imunologia , Infecções por Lentivirus/imunologia , Monócitos/imunologia , NF-kappa B/imunologia , Apoptose , Proteína Reguladora de Apoptosis Semelhante a CASP8 e FADD/genética , Células Cultivadas , Humanos , Terapia de Imunossupressão , Lentivirus/fisiologia , Infecções por Lentivirus/genética , Infecções por Lentivirus/fisiopatologia , Infecções por Lentivirus/virologia , Células Mieloides/imunologia , NF-kappa B/genética
17.
Vaccine ; 36(25): 3708-3716, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29752021

RESUMO

Most active cancer immunotherapies able to induce a long-lasting protection against tumours are based on the activation of tumour-specific cytotoxic T lymphocytes (CTLs). Cell death by hyperthermia induces apoptosis followed by secondary necrosis, with the production of factors named "danger associated molecular pattern" (DAMP) molecules (DAMPs), that activate dendritic cells (DCs) to perform antigen uptake, processing and presentation, followed by CTLs cross priming. In many published studies, hyperthermia treatment of tumour cells is performed at 42-45 °C; these temperatures mainly promote cell surface expression of DAMPs. Treatment at 56 °C of tumour cells was shown to induce DAMPs secretion rather than their cell surface expression, improving DC activation and CTL cross priming in vitro. Thus we tested the relevance of this finding in vivo on the generation of a tumour-specific memory immune response, in the TRAMP-C2 mouse prostate carcinoma transplantable model. TRAMP-C2 tumour cells treated at 56 °C were able not only to activate DCs in vitro but also to trigger a tumour-specific CTL-dependent immune response in vivo. Prophylactic vaccination with 56 °C-treated TRAMP-C2 tumour cells alone provided protection against TRAMP-C2 tumour growth in vivo, whilst in the therapeutic regimen, control of tumour growth was achieved combining immunization with adjuvant chemotherapy.


Assuntos
Terapia Combinada/métodos , Células Dendríticas/imunologia , Células Epiteliais/transplante , Hipertermia Induzida/métodos , Imunoterapia/métodos , Neoplasias da Próstata/terapia , Linfócitos T Citotóxicos/imunologia , Animais , Antineoplásicos/farmacologia , Quimioterapia Adjuvante/métodos , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/patologia , Células Epiteliais/imunologia , Células Epiteliais/patologia , Temperatura Alta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais , Próstata/efeitos dos fármacos , Próstata/imunologia , Próstata/patologia , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/patologia , Análise de Sobrevida , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/patologia , Carga Tumoral/efeitos dos fármacos , Células Tumorais Cultivadas
18.
Oncotarget ; 8(50): 86987-87001, 2017 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-29152058

RESUMO

Telomerase (TERT) is a ribonucleoprotein enzyme that preserves the molecular organization at the ends of eukaryotic chromosomes. Since TERT deregulation is a common step in leukaemia, treatments targeting telomerase might be useful for the therapy of hematologic malignancies. Despite a large spectrum of potential drugs, their bench-to-bedside translation is quite limited, with only a therapeutic vaccine in the clinic and a telomerase inhibitor at late stage of preclinical validation. We recently demonstrated that the adoptive transfer of T cell transduced with an HLA-A2-restricted T-cell receptor (TCR), which recognize human TERT with high avidity, controls human B-cell chronic lymphocytic leukaemia (B-CLL) progression without severe side-effects in humanized mice. In the present report, we show the ability of our approach to limit the progression of more aggressive leukemic pathologies, such as acute myeloid leukaemia (AML) and B-cell acute lymphoblastic leukaemia (B-ALL). Together, our findings demonstrate that TERT-based adoptive cell therapy is a concrete platform of T cell-mediated immunotherapy for leukaemia treatment.

19.
Int J Med Robot ; 12(4): 613-619, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26748491

RESUMO

INTRODUCTION: The aim of this study was to identify, quantify and evaluate the use of robotic materials and operating theatre times in Telelap ALF-X robotic hysterectomy. MATERIALS AND METHODS: Cost analysis was performed on 81 patients who underwent a Telelap ALF-X robotic hysterectomy. Data were collected during a phase II study trial conducted at the University Hospital A. Gemelli, Catholic University, Rome. According to micro-costing technique, surgical team costs, materials and operating theatre usage were recorded during each surgical intervention. Cost data were provided by the hospital's accounting office. Probabilistic sensitivity analysis was carried out in order to test the robustness of the results by assuming an Inv-norm random variable. RESULTS: The base case analysis showed a cost/patient of €3391.82. The new robotic device requires a low consumption of robotic materials. Sensitivity analysis showed that the most sensitive cost driver was use of the operating theatre. CONCLUSION: This study shows that Telelap ALF-X robotic hysterectomy is feasible and safe and could offer specific advantages in terms of cost. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Neoplasias do Endométrio/cirurgia , Histerectomia/métodos , Duração da Cirurgia , Procedimentos Cirúrgicos Robóticos/métodos , Algoritmos , Custos e Análise de Custo , Neoplasias do Endométrio/economia , Feminino , Humanos , Histerectomia/economia , Histerectomia/instrumentação , Salas Cirúrgicas , Medição da Dor , Probabilidade , Procedimentos Cirúrgicos Robóticos/economia , Procedimentos Cirúrgicos Robóticos/instrumentação , Resultado do Tratamento
20.
BMC Genomics ; 15 Suppl 3: S1, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25077564

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) accounts for 81% of all cases of lung cancer and they are often fatal because 60% of the patients are diagnosed at an advanced stage. Besides the need for earlier diagnosis, there is a high need for additional effective therapies. In this work, we investigated the feasibility of a lung cancer progression mouse model, mimicking features of human aggressive NSCLC, as biological reservoir for potential therapeutic targets and biomarkers. RESULTS: We performed RNA-seq profiling on total RNA extracted from lungs of a 30 week-old K-ras(LA1)/p53(R172HΔg) and wild type (WT) mice to detect fusion genes and gene/exon-level differential expression associated to the increase of tumor mass. Fusion events were not detected in K-ras(LA1)/p53(R172HΔg) tumors. Differential expression at exon-level detected 33 genes with differential exon usage. Among them nine, i.e. those secreted or expressed on the plasma membrane, were used for a meta-analysis of more than 500 NSCLC RNA-seq transcriptomes. None of the genes showed a significant correlation between exon-level expression and disease prognosis. Differential expression at gene-level allowed the identification of 1513 genes with a significant increase in expression associated to tumor mass increase. 74 genes, i.e. those secreted or expressed on the plasma membrane, were used for a meta-analysis of two transcriptomics datasets of human NSCLC samples, encompassing more than 900 samples. SPP1 was the only molecule whose over-expression resulted statistically related to poor outcome regarding both survival and metastasis formation. Two other molecules showed over-expression associated to poor outcome due to metastasis formation: GM-CSF and ADORA3. GM-CSF is a secreted protein, and we confirmed its expression in the supernatant of a cell line derived by a K-ras(LA1)/p53(R172HΔg) mouse tumor. ADORA3 is instead involved in the induction of p53-mediated apoptosis in lung cancer cell lines. Since in our model p53 is inactivated, ADORA3 does not negatively affect tumor growth but remains expressed on tumor cells. Thus, it could represent an interesting target for the development of antibody-targeted therapy on a subset of NSCLC, which are p53 null and ADORA3 positive. CONCLUSIONS: Our study provided a complete transcription overview of the K-ras(LA1)/p53(R172HΔg) mouse NSCLC model. This approach allowed the detection of ADORA3 as a potential target for antibody-based therapy in p53 mutated tumors.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , Animais , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Genes p53 , Genes ras , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/mortalidade , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Knockout , Terapia de Alvo Molecular , Osteopontina/genética , Prognóstico , Transcriptoma , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA