Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 947: 174646, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38986696

RESUMO

Although anthropogenic activities are the primary drivers of increased greenhouse gas (GHG) emissions, it is crucial to acknowledge that wetlands are a significant source of these gases. Brazil's Pantanal, the largest tropical inland wetland, includes numerous lacustrine systems with freshwater and soda lakes. This study focuses on soda lakes to explore potential biogeochemical cycling and the contribution of biogenic GHG emissions from the water column, particularly methane. Both seasonal variations and the eutrophic status of each examined lake significantly influenced GHG emissions. Eutrophic turbid lakes (ET) showed remarkable methane emissions, likely due to cyanobacterial blooms. The decomposition of cyanobacterial cells, along with the influx of organic carbon through photosynthesis, accelerated the degradation of high organic matter content in the water column by the heterotrophic community. This process released byproducts that were subsequently metabolized in the sediment leading to methane production, more pronounced during periods of increased drought. In contrast, oligotrophic turbid lakes (OT) avoided methane emissions due to high sulfate levels in the water, though they did emit CO2 and N2O. Clear vegetated oligotrophic turbid lakes (CVO) also emitted methane, possibly from organic matter input during plant detritus decomposition, albeit at lower levels than ET. Over the years, a concerning trend has emerged in the Nhecolândia subregion of Brazil's Pantanal, where the prevalence of lakes with cyanobacterial blooms is increasing. This indicates the potential for these areas to become significant GHG emitters in the future. The study highlights the critical role of microbial communities in regulating GHG emissions in soda lakes, emphasizing their broader implications for global GHG inventories. Thus, it advocates for sustained research efforts and conservation initiatives in this environmentally critical habitat.


Assuntos
Gases de Efeito Estufa , Lagos , Metano , Microbiota , Lagos/química , Lagos/microbiologia , Gases de Efeito Estufa/análise , Brasil , Metano/análise , Monitoramento Ambiental , Áreas Alagadas , Eutrofização , Poluentes Atmosféricos/análise
2.
Environ Sci Pollut Res Int ; 29(6): 8767-8778, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34491500

RESUMO

Microcystin, a cyanotoxin produced by Microcystis aeruginosa growing in eutrophic waters, can promote liver tumors in people ingesting contaminated water. To date, water treatment systems have not been effective in removing or degrading these cyanotoxins. In this work, we investigated the inhibitory activity of surfactants on the growth of M. aeruginosa and their application to extract the intracellular produced cyanotoxins. The experiments involving growth inhibition and extraction of cyanotoxins were carried out using the non-biodegradable surfactant cetyl trimethyl ammonium bromide (CTAB) in addition to other biodegradable surfactants. These were Tween 80 and surfactants derived from amino acids and peptides, respectively, from arginine, SDA, and hydrolyzed peptone, SDP. We demonstrated that the tested surfactants could be used to inhibit the growth of M. aeruginosa. At this point, CTAB and SDA proved to be the most competent surfactants in reducing cyanobacterial growth. Moreover, microcystins have been successfully removed from the water employing a cloud point extraction protocol based on the use of these surfactants and ammonium sulfate.


Assuntos
Microcistinas , Microcystis , Aminoácidos , Toxinas de Cianobactérias , Humanos
3.
J Phycol ; 57(5): 1392-1402, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34291461

RESUMO

Free access databases of DNA sequences containing microbial genetic information have changed the way scientists look at the microbial world. Currently, the NCBI database includes about 516 distinct search results for Cyanobacterial genomes distributed in a taxonomy based on a polyphasic approach. While their classification and taxonomic relationships are widely used as is, recent proposals to alter their grouping include further exploring the relationship between Cyanobacteria and Melainabacteria. Nowadays, most cyanobacteria still are named under the Botanical Code; however, there is a proposal made by the Genome Taxonomy Database (GTDB) to harmonize cyanobacteria nomenclature with the other bacteria, an initiative to standardize microbial taxonomy based on genome phylogeny, in order to contribute to an overall better phylogenetic resolution of microbiota. Furthermore, the assembly level of the genomes and their geographical origin demonstrates some trends of cyanobacteria genomics on the scientific community, such as low availability of complete genomes and underexplored sampling locations. By describing how available cyanobacterial genomes from free-access databases fit within different taxonomic classifications, this mini-review provides a holistic view of the current knowledge of cyanobacteria and indicates some steps towards improving our efforts to create a more cohesive and inclusive classifying system, which can be greatly improved by using large-scale sequencing and metagenomic techniques.


Assuntos
Cianobactérias , Microbiota , Cianobactérias/genética , Genômica , Metagenoma , Filogenia
4.
Artigo em Inglês | MEDLINE | ID: mdl-33476257

RESUMO

The saline-alkaline lakes (soda lakes) are the habitat of the haloalkaliphilic cyanobacterium Anabaenopsis elenkinii, the type species of this genus. To obtain robust phylogeny of this type species, we have generated whole-genome sequencing of the bloom-forming Anabaenopsis elenkinii strain CCIBt3563 isolated from a Brazilian soda lake. This strain presents the typical morphology of A. elenkinii with short and curved trichomes with apical heterocytes established after separation of paired intercalary heterocytes and also regarding to cell dimensions. Its genome size is 4 495 068 bp, with a G+C content of 41.98 %, a total of 3932 potential protein coding genes and four 16S rRNA genes. Phylogenomic tree inferred by RAxML based on the alignment of 120 conserved proteins using GTDB-Tk grouped A. elenkinii CCIBt3563 together with other genera of the family Aphanizomenonaceae. However, the only previous available genome of Anabaenopsis circularis NIES-21 was distantly positioned within a clade of Desikacharya strains, a genus from the family Nostocaceae. Furthermore, average nucleotide identity values from 86-98 % were obtained among NIES-21 and Desikacharya genomes, while this value was 76.04 % between NIES-21 and the CCIBt3563 genome. These findings were also corroborated by the phylogenetic tree of 16S rRNA gene sequences, which also showed a strongly supported subcluster of A. elenkinii strains from Brazilian, Mexican and Kenyan soda lakes. This study presents the phylogenomics and genome-scale analyses of an Anabaenopsis elenkinii strain, improving molecular basis for demarcation of this species and framework for the classification of cyanobacteria based on the polyphasic approach.


Assuntos
Cianobactérias/classificação , Lagos/microbiologia , Filogenia , Álcalis , Técnicas de Tipagem Bacteriana , Composição de Bases , Brasil , DNA Bacteriano/genética , Ácidos Graxos/química , Concentração de Íons de Hidrogênio , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
5.
FEMS Microbiol Ecol ; 97(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33242088

RESUMO

Interactions between climate change and ultraviolet radiation (UVR) have a substantial impact on aquatic ecosystems, especially on photosynthetic organisms. To counteract the damaging effects of UVR, cyanobacteria developed adaptive strategies such as the biosynthesis of secondary metabolites. This study aimed to evaluate the effects of UVR on the metabolomic profiles of potentially toxic cyanobacteria. Twelve strains were irradiated with ultraviolet A and ultraviolet B radiation and parabolic aluminized reflector lamps for 3 days, followed by liquid chromatography-tandem mass spectometry (LC-MS/MS) analysis to assess changes in metabolomic profiles. Matrices were used to generate principal component analysis biplots, and molecular networks were obtained using the Global Natural Products platform. Most strains showed significant changes in their metabolomic profiles after UVR exposure. On average, 7% of MS features were shown to be exclusive to metabolomic profiles before UVR exposure, while 9% were unique to metabolomic profiles after UVR exposure. The identified compounds included aeruginosins, spumigins, cyanopeptolins, microginins, namalides, pseudospumigins, anabaenopeptins, mycosporine-like amino acids, nodularins and microcystins. Data showed that cyanobacteria display broad metabolic plasticity upon UVR exposure, including the synthesis and differential expression of a variety of secondary metabolites. This could result in a competitive advantage, supporting cyanobacterial blooms under various UVR light exposures.


Assuntos
Cianobactérias , Raios Ultravioleta , Cromatografia Líquida , Ecossistema , Espectrometria de Massas em Tandem
6.
Mar Drugs ; 13(4): 2124-40, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25871291

RESUMO

Cyanobacteria are photosynthetic prokaryotes found in a range of environments. They are infamous for the production of toxins, as well as bioactive compounds, which exhibit anticancer, antimicrobial and protease inhibition activities. Cyanobacteria produce a broad range of antifungals belonging to structural classes, such as peptides, polyketides and alkaloids. Here, we tested cyanobacteria from a wide variety of environments for antifungal activity. The potent antifungal macrolide scytophycin was detected in Anabaena sp. HAN21/1, Anabaena cf. cylindrica PH133, Nostoc sp. HAN11/1 and Scytonema sp. HAN3/2. To our knowledge, this is the first description of Anabaena strains that produce scytophycins. We detected antifungal glycolipopeptide hassallidin production in Anabaena spp. BIR JV1 and HAN7/1 and in Nostoc spp. 6sf Calc and CENA 219. These strains were isolated from brackish and freshwater samples collected in Brazil, the Czech Republic and Finland. In addition, three cyanobacterial strains, Fischerella sp. CENA 298, Scytonema hofmanni PCC 7110 and Nostoc sp. N107.3, produced unidentified antifungal compounds that warrant further characterization. Interestingly, all of the strains shown to produce antifungal compounds in this study belong to Nostocales or Stigonematales cyanobacterial orders.


Assuntos
Antifúngicos/isolamento & purificação , Aspergillus flavus/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Cianobactérias/química , Descoberta de Drogas , Anabaena/química , Anabaena/classificação , Anabaena/crescimento & desenvolvimento , Anabaena/isolamento & purificação , Antifúngicos/química , Antifúngicos/farmacologia , Aspergillus flavus/crescimento & desenvolvimento , Brasil , Candida albicans/crescimento & desenvolvimento , Cianobactérias/classificação , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/isolamento & purificação , República Tcheca , Finlândia , Água Doce/microbiologia , Glicolipídeos/química , Glicolipídeos/isolamento & purificação , Glicolipídeos/farmacologia , Lipopeptídeos/química , Lipopeptídeos/isolamento & purificação , Lipopeptídeos/farmacologia , Estrutura Molecular , Tipagem Molecular , Nostoc/química , Nostoc/classificação , Nostoc/crescimento & desenvolvimento , Nostoc/isolamento & purificação , Peptídeos Cíclicos/química , Peptídeos Cíclicos/isolamento & purificação , Peptídeos Cíclicos/farmacologia , Filogenia , Piranos/química , Piranos/isolamento & purificação , Piranos/farmacologia , Águas Salinas , Especificidade da Espécie
7.
Anal Sci ; 19(12): 1611-6, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14696923

RESUMO

A home-made system hyphenating capillary electrophoresis with an inductively coupled plasma mass spectrometer (CE-ICP-MS) for cadmium speciation of protein-binding and free cadmium ions in solution is presented. The CE-ICP-MS interface consisted of an acrylic block with an internal volume ca. 20 microL in which a platinum electrode, a capillary column, and a connection to an ICP nebulizer were inserted. A make-up electrolyte solution containing 50 mmol L(-1) Tris-HCl buffer solution (pH 9.0) was continuously flowed through the interface to the ICP nebulizer. The separation of free Cd ions, Cd-cysteine, and Cd bounded to metallothionein (MT) isoforms from rabbit liver was carried out by capillary electrophoresis, and the analytes were detected by ICP-MS. The feasibility to isolate metallothionein compounds extracted from the cyanobacterium Synechococcus PCC7942 was demonstrated. The Cd binding proteins were induced in Synechococcus PCC7942 and further analyzed by CE ICP-MS.


Assuntos
Cianobactérias/química , Eletroforese Capilar/métodos , Espectrometria de Massas/métodos , Metalotioneína/isolamento & purificação , Animais , Cádmio/análise , Cádmio/química , Cádmio/metabolismo , Eletroforese Capilar/instrumentação , Desenho de Equipamento , Fígado/química , Espectrometria de Massas/instrumentação , Metalotioneína/metabolismo , Ligação Proteica , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA