Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; : 124455, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38942274

RESUMO

Textile materials are one of the primary sources of microplastic pollution. The washing procedure is by far the most significant way that textile products release microplastic fibers (MPFs). Therefore, in this study, the effects of various textile raw materials (A acrylic, PA polyamide, PET polyester, RPET recycled polyester and PP polypropylene), fabric construction properties (woven, knitted), thickness and basis weight values on MPFs release at different washing stages (pre-washing, soaping/rinsing) were examined separately. To mimic the most popular home washing procedures, a 10-minute pre-wash and a 35-minute soaping/rinsing phase at 40°C were selected for the washing procedure. Utilizing the Image J program on macroscopic images captured by a high-resolution SL.R camera, the microfibers collected by filtering the water have been visually counted. According to the results, knitted fabrics released fewer MPFs than woven fabrics, with the woven acrylic sample (A3-w) exhibiting the highest release (2405 MPFs). The number of MPFs increased along with the thickness and weight of the fabric. Recycled polyester was found to release more MPFs than virgin polyester under the same conditions (1193 MPFs vs. 908 MPFs). This study demonstrates how recycled polyester, although initially an environmentally beneficial solution, can eventually become detrimental to the environment. Furthermore, it is known that the pre-washing procedure-which is optional-releases a lot more MPFs than the soaping and rinsing procedures, and that stopping this procedure will drastically lower the amount of MPFs incorporated into the water.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38468005

RESUMO

Lithium recovery from Lithium-ion batteries requires hydrometallurgy but up-to-date technologies aren't economically viable for Lithium-Iron-Phosphate (LFP) batteries. Selective leaching (specifically targeting Lithium and based on mild organic acids and low temperatures) is attracting attention because of decreased environmental impacts compared to conventional hydrometallurgy. This study analysed the technical and economic performances of selective leaching with 6%vv. H2O2 and citric acid (0.25-1 M, 25 °C, 1 h, 70 g/l) compared with conventional leaching with an inorganic acid (H2SO4 1 M, 40 °C, 2 h, 50 g/l) and an organic acid (citric acid 1 M, 25 °C, 1 h, 70 g/l) to recycle end of life LFP cathodes. After conventional leaching, chemical precipitation allowed to recover in multiple steps Li, Fe and P salts, while selective leaching allowed to recover Fe and P, in the leaching residues and required chemical precipitation only for lithium recovery. Conventional leaching with 1 M acids achieved leaching efficiencies equal to 95 ± 2% for Li, 98 ± 8% for Fe, 96 ± 3% for P with sulfuric acid and 83 ± 0.8% for Li, 8 ± 1% for Fe, 12 ± 5% for P with citric acid. Decreasing citric acid's concentration from 1 to 0.25 M didn't substantially change leaching efficiency. Selective leaching with citric acid has higher recovery efficiency (82 ± 6% for Fe, 74 ± 8% for P, 29 ± 5% for Li) than conventional leaching with sulfuric acid (69 ± 15% for Fe, 70 ± 18% for P, and 21 ± 2% for Li). Also, impurities' amounts were lower with citric acid (335 ± 19 335 ± 19 of S mg/kg of S) than with sulfuric acid (8104 ± 2403 mg/kg of S). In overall, the operative costs associated to 0.25 M citric acid route (3.17€/kg) were lower compared to 1 M sulfuric acid (3.52€/kg). In conclusion, citric acid could be a viable option to lower LFP batteries' recycling costs, and it should be further explored prioritizing Lithium recovery and purity of recovered materials.

3.
Materials (Basel) ; 14(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34771760

RESUMO

The shredding of end-of-life refrigerators produces every year in Italy 15,000 tons of waste polyurethane foam (PUF), usually destined for energy recovery. This work presents the results of the investigation of the oil sorption potential of waste PUF according to ASTM F726-17 standard. Three oils (diesel fuel and two commercial motor oils) having different densities (respectively, 0.83, 0.87, and 0.88 kg/dm3) and viscosities (respectively, 3, 95, and 140 mm2/s at 40 °C) were considered. The waste PUF was sampled in an Italian e-waste treatment plant, and its characterization showed 16.5 wt% particles below 0.71 mm and 13 wt% impurities (paper, plastic, aluminum foil), mostly having dimensions (d) above 5 mm. Sieving at 0.071 mm was applied to the waste PUF to obtain a "coarse" (d > 0.71 mm) and a "fine" fraction (d < 0.71 mm). Second sieving at 5 mm allowed an "intermediate" fraction to be obtained, with dimensions between 0.71 and 5 mm. The oil sorption tests involved the three fractions of waste PUF, and their performances were compared with two commercial oil sorbents (sepiolite and OKO-PUR). The results of the tests showed that the "fine" PUF was able to retain 7.1-10.3 g oil/g, the "intermediate" PUF, 4.2-7.4 g oil/g, and the "coarse" PUF, 4.5-7.0 g oil/g, while sepiolite and OKO-PUR performed worse (respectively, 1.3-1.6 and 3.3-5.3 g oil/g). In conclusion, compared with the actual management of waste PUF (100 wt% sent to energy recovery), the amount destined directly to energy recovery could be limited to 13 wt% (i.e., the impurities). The remaining 87 wt% could be diverted to reuse for oil sorption, and afterward directed to energy recovery, considered as a secondary option.

4.
Waste Manag ; 82: 71-81, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30509597

RESUMO

Plastic waste is a relevant challenge for waste management sector and further technological means have to be urgently researched. The evaluation of plastic waste quality through non-destructive, cost-effective and mature technologies could be without any doubt a key issue. This study is aimed at the assessment of Near Infrared (NIR) spectroscopy for the generation of global degradation-prediction models able to forecast plastic ageing. The degradation of Polyethylene terephthalate (PET), Acrylonitrile Butadiene Styrene (ABS), Polypropylene (PP) and Polyethylene (PE) was achieved by thermal ageing (at 85 °C, 105 °C and 120 °C and durations ranging from 4 to 504 h), to simulate environmental outdoor conditions. Experimental data obtained for each plastic material were elaborated through partial least square (PLS) regression to obtain empirical models. For all inspected plastic materials, a good correspondence between the variation in absorbance units and the change in chemical bonds vibrations was observed. The PLS models were afterwards calibrated (taking into account the different ageing conditions; first separately then including the ageing factors combined). A high accuracy (R2 equal to 0.85-1.00) was observed in predicting ageing for PET and ABS, while the correspondence showed a 30% decrease for PE and PP. This study proves that NIR spectroscopy can be recommended as an effective tool to investigate plastics degradation, with some limitations for specific polymers that need further investigations.


Assuntos
Plásticos , Gerenciamento de Resíduos , Polietilenotereftalatos , Espectroscopia de Luz Próxima ao Infravermelho , Resíduos
5.
Environ Sci Pollut Res Int ; 20(7): 4980-92, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23329128

RESUMO

Owing to the extensive use of artificial turfs worldwide, over the past 10 years there has been much discussion about the possible health and environmental problems originating from styrene-butadiene recycled rubber. In this paper, the authors performed a Tier 2 environmental-sanitary risk analysis on five artificial turf sports fields located in the city of Turin (Italy) with the aid of RISC4 software. Two receptors (adult player and child player) and three routes of exposure (direct contact with crumb rubber, contact with rainwater soaking the rubber mat, inhalation of dusts and gases from the artificial turf fields) were considered in the conceptual model. For all the fields and for all the routes, the cumulative carcinogenic risk proved to be lower than 10(-6) and the cumulative non-carcinogenic risk lower than 1. The outdoor inhalation of dusts and gases was the main route of exposure for both carcinogenic and non-carcinogenic substances. The results given by the inhalation pathway were compared with those of a risk assessment carried out on citizens breathing gases and dusts from traffic emissions every day in Turin. For both classes of substances and for both receptors, the inhalation of atmospheric dusts and gases from vehicular traffic gave risk values of one order of magnitude higher than those due to playing soccer on an artificial field.


Assuntos
Butadienos/efeitos adversos , Butadienos/análise , Elastômeros/efeitos adversos , Elastômeros/análise , Exposição Ambiental/análise , Poluentes Ambientais/análise , Estirenos/efeitos adversos , Estirenos/análise , Benzeno/efeitos adversos , Benzeno/análise , Exposição Ambiental/efeitos adversos , Poluentes Ambientais/efeitos adversos , Humanos , Itália , Modelos Teóricos , Tamanho da Partícula , Reciclagem , Medição de Risco , Futebol , Tolueno/efeitos adversos , Tolueno/análise , Xilenos/efeitos adversos , Xilenos/análise
6.
Ann Chim ; 95(11-12): 779-89, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16398342

RESUMO

Zero-valent iron Permeable Reactive Barriers (PRBs) are an efficient and relatively low cost in situ technology for the remediation of aquifers polluted by chlorinated solvents. The groundwater composition and the zero-valent iron reactive material are linked by mutual connections. The groundwater, to a certain extent depending on its composition, is able to oxidize the metallic iron, thus decreasing its reactivity; on the other hand, the dechlorination process and the leaching of chemical species from the reactive substrate may deeply modify groundwater composition. In this study the results of some batch and leaching column tests, performed by means of Connelly iron (Environmental Technologies Inc., Canada) and different aqueous phases (distilled water and an artificial groundwater) are compared, to evaluate the influence of groundwater composition on the reactivity of the iron material for trichloroethylene (TCE) remediation. The degradation mechanisms of the pollutant are discussed. On the grounds of the gathered results the aqueous phase composition shows a strong influence on TCE degradation kinetics obtained by means of Connelly iron; in fact the presence of dissolved substances accelerates TCE degradation.


Assuntos
Ferro/química , Tricloroetileno/química , Poluentes Químicos da Água , Dicloroetilenos/química , Condutividade Elétrica , Água Doce , Concentração de Íons de Hidrogênio , Cinética , Modelos Químicos , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA