Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 15: 1275419, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38318294

RESUMO

Background: The contribution of gut microbiota to the pathogenesis of polycystic ovary syndrome (PCOS) is controversial. The causal relationship to this question is worth an in-depth comprehensive of known single nucleotide polymorphisms associated with gut microbiota. Methods: We conducted bidirectional Mendelian randomization (MR) utilizing instrumental variables associated with gut microbiota (N = 18,340) from MiBioGen GWAS to assess their impact on PCOS risk in the FinnGen GWAS (27,943 PCOS cases and 162,936 controls). Two-sample MR using inverse variance weighting (IVW) was undertaken, followed by the weighted median, weighted mode, and MR-Egger regression. In a subsample, we replicated our findings using the meta-analysis PCOS consortium (10,074 cases and 103,164 controls) from European ancestry. Results: IVWMR results suggested that six gut microbiota were causally associated with PCOS features. After adjusting BMI, SHBG, fasting insulin, testosterone, and alcohol intake frequency, the effect sizes were significantly reduced. Reverse MR analysis revealed that the effects of PCOS features on 13 gut microbiota no longer remained significant after sensitivity analysis and Bonferroni corrections. MR replication analysis was consistent and the results suggest that gut microbiota was likely not an independent cause of PCOS. Conclusion: Our findings did not support the causal relationships between the gut microbiota and PCOS features at the genetic level. More comprehensive genome-wide association studies of the gut microbiota and PCOS are warranted to confirm their genetic relationship. Declaration: This study contains 3533 words, 0 tables, and six figures in the text as well as night supplementary files and 0 supplementary figures in the Supplementary material.


Assuntos
Diarreia Infantil , Fácies , Retardo do Crescimento Fetal , Microbioma Gastrointestinal , Doenças do Cabelo , Síndrome do Ovário Policístico , Feminino , Humanos , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Síndrome do Ovário Policístico/genética
2.
Front Cell Infect Microbiol ; 10: 581066, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117734

RESUMO

Pore-forming proteins (PFPs) are a group of functionally versatile molecules distributed in all domains of life, and several microbial pathogens notably use members of this class of proteins as cytotoxic effectors. Among pathogenic protists, Entamoeba histolytica, and Naegleria fowleri display a range of pore-forming toxins belonging to the Saposin-Like Proteins (Saplip) family: Amoebapores and Naegleriapores. Following the genome sequencing of Trichomonas vaginalis, we identified a gene family of 12 predicted saposin-like proteins (TvSaplips): this work focuses on investigating the potential role of TvSaplips as cytopathogenetic effectors. We provide evidence that TvSaplip12 gene expression is potently upregulated upon T. vaginalis contact with target cells. We cloned and expressed recombinant TvSaplip12 in planta and we demonstrate haemolytic, cytotoxic, and bactericidal activities of rTvSaplip12 in vitro. Also, evidence for TvSaplip subcellular discrete distribution in cytoplasmic granules is presented. Altogether, our results highlight the importance of TvSaplip in T. vaginalis pathogenesis, depicting its involvement in the cytolytic and bactericidal activities during the infection process, leading to predation on host cells and resident vaginal microbiota for essential nutrients acquisition. This hence suggests a potential key role for TvSaplip12 in T. vaginalis pathogenesis as a candidate Trichopore.


Assuntos
Entamoeba histolytica , Trichomonas vaginalis , Entamoeba histolytica/genética , Feminino , Humanos , Porinas , Nicotiana , Trichomonas vaginalis/genética , Vagina
3.
Virol J ; 17(1): 142, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32993724

RESUMO

Infections caused by protozoan parasites burden the world with huge costs in terms of human and animal health. Most parasitic diseases caused by protozoans are neglected, particularly those associated with poverty and tropical countries, but the paucity of drug treatments and vaccines combined with increasing problems of drug resistance are becoming major concerns for their control and eradication. In this climate, the discovery/repurposing of new drugs and increasing effort in vaccine development should be supplemented with an exploration of new alternative/synergic treatment strategies. Viruses, either native or engineered, have been employed successfully as highly effective and selective therapeutic approaches to treat cancer (oncolytic viruses) and antibiotic-resistant bacterial diseases (phage therapy). Increasing evidence is accumulating that many protozoan, but also helminth, parasites harbour a range of different classes of viruses that are mostly absent from humans. Although some of these viruses appear to have no effect on their parasite hosts, others either have a clear direct negative impact on the parasite or may, in fact, contribute to the virulence of parasites for humans. This review will focus mainly on the viruses identified in protozoan parasites that are of medical importance. Inspired and informed by the experience gained from the application of oncolytic virus- and phage-therapy, rationally-driven strategies to employ these viruses successfully against parasitic diseases will be presented and discussed in the light of the current knowledge of the virus biology and the complex interplay between the viruses, the parasite hosts and the human host. We also highlight knowledge gaps that should be addressed to advance the potential of virotherapy against parasitic diseases.


Assuntos
Interações Hospedeiro-Parasita , Terapia Viral Oncolítica/métodos , Parasitos/virologia , Doenças Parasitárias/terapia , Terapia por Fagos/métodos , Animais , Humanos , Terapia Viral Oncolítica/normas , Terapia por Fagos/normas
4.
Res Microbiol ; 168(9-10): 882-891, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28366838

RESUMO

Trichomonas vaginalis is a protozoan with an extracellular obligatory parasitic lifestyle exclusively adapted to the human urogenital tract and responsible for nearly a quarter billion sexually transmitted infections worldwide each year. This review focuses on symbiotic Trichomonasvirus and mycoplasmas carried by the protozoan, their molecular features and their role in altering the human vaginal microbiome and the immunopathogenicity of the parasite. Improved diagnostics and larger clinical interventional studies are needed to confirm the causative role of protozoan symbionts in the variable clinical presentation of trichomoniasis and its morbid sequelae, including adverse reproductive outcome, susceptibility to viral infections and cancer.


Assuntos
Mycoplasma/isolamento & purificação , Totiviridae/isolamento & purificação , Trichomonas vaginalis/isolamento & purificação , Vagina/microbiologia , Vagina/parasitologia , Vaginite/microbiologia , Vaginite/parasitologia , Feminino , Humanos , Trichomonas/virologia , Vaginite por Trichomonas/parasitologia
5.
Infect Immun ; 84(10): 2953-62, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27481240

RESUMO

Free-living amoebae of the genus Acanthamoeba can cause severe and chronic infections in humans, mainly localized in immune privileged sites, such as the brain and the eye. Monocytes/macrophages are thought to be involved in Acanthamoeba infections, but little is known about how these facultative parasites influence their functions. The aim of this work was to investigate the effects of Acanthamoeba on human monocytes/macrophages during the early phase of infection. Here, THP-1 cells, primary human monocytes isolated from peripheral blood, and human monocyte-derived macrophages were either coincubated with trophozoites of a clinical isolate of Acanthamoeba (genotype T4) or stimulated with amoeba-derived cell-free conditioned medium. Production of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin-6 [IL-6], and IL-12), anti-inflammatory cytokine (IL-10), and chemokine (IL-8) was evaluated at specific hours poststimulation (ranging from 1.5 h to 23 h). We showed that both Acanthamoeba trophozoites and soluble amoebic products induce an early anti-inflammatory monocyte-macrophage phenotype, characterized by significant production of IL-10; furthermore, challenge with either trophozoites or their soluble metabolites stimulate both proinflammatory cytokines and chemokine production, suggesting that this protozoan infection results from the early induction of coexisting, opposed immune responses. Results reported in this paper confirm that the production of proinflammatory cytokines and chemokines by monocytes and macrophages can play a role in the development of the inflammatory response during Acanthamoeba infections. Furthermore, we demonstrate for the first time that Acanthamoeba stimulates IL-10 production in human innate immune cells, which might both promote the immune evasion of Acanthamoeba and limit the induced inflammatory response.


Assuntos
Acanthamoeba castellanii/imunologia , Amebíase/imunologia , Citocinas/metabolismo , Interleucina-10/metabolismo , Leucócitos Mononucleares/metabolismo , Macrófagos/metabolismo , Análise de Variância , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Genótipo , Humanos
6.
Proc Natl Acad Sci U S A ; 111(22): 8179-84, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24843155

RESUMO

The human-infective parasite Trichomonas vaginalis causes the most prevalent nonviral sexually transmitted infection worldwide. Infections in men may result in colonization of the prostate and are correlated with increased risk of aggressive prostate cancer. We have found that T. vaginalis secretes a protein, T. vaginalis macrophage migration inhibitory factor (TvMIF), that is 47% similar to human macrophage migration inhibitory factor (HuMIF), a proinflammatory cytokine. Because HuMIF is reported to be elevated in prostate cancer and inflammation plays an important role in the initiation and progression of cancers, we have explored a role for TvMIF in prostate cancer. Here, we show that TvMIF has tautomerase activity, inhibits macrophage migration, and is proinflammatory. We also demonstrate that TvMIF binds the human CD74 MIF receptor with high affinity, comparable to that of HuMIF, which triggers activation of ERK, Akt, and Bcl-2-associated death promoter phosphorylation at a physiologically relevant concentration (1 ng/mL, 80 pM). TvMIF increases the in vitro growth and invasion through Matrigel of benign and prostate cancer cells. Sera from patients infected with T. vaginalis are reactive to TvMIF, especially in males. The presence of anti-TvMIF antibodies indicates that TvMIF is released by the parasite and elicits host immune responses during infection. Together, these data indicate that chronic T. vaginalis infections may result in TvMIF-driven inflammation and cell proliferation, thus triggering pathways that contribute to the promotion and progression of prostate cancer.


Assuntos
Macrófagos/imunologia , Neoplasias da Próstata/imunologia , Neoplasias da Próstata/parasitologia , Proteínas de Protozoários/imunologia , Tricomoníase/imunologia , Trichomonas vaginalis/imunologia , Sequência de Aminoácidos , Linhagem Celular Tumoral , Células Cultivadas , Sequência Conservada , Humanos , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Fatores Inibidores da Migração de Macrófagos/genética , Fatores Inibidores da Migração de Macrófagos/imunologia , Macrófagos/citologia , Macrófagos/parasitologia , Masculino , Dados de Sequência Molecular , Próstata/imunologia , Próstata/parasitologia , Próstata/patologia , Neoplasias da Próstata/patologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Homologia de Sequência , Tricomoníase/complicações , Tricomoníase/parasitologia , Trichomonas vaginalis/genética , Trichomonas vaginalis/metabolismo
7.
Sex Transm Infect ; 89(6): 449-54, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23633668

RESUMO

OBJECTIVES: Trichomonas vaginalis is the causative agent of trichomoniasis, one of the most common sexually transmitted diseases worldwide. In recent years we have described the symbiotic relationship between T vaginalis and Mycoplasma hominis. How this biological association might affect the pathogenicity of one or both the microorganisms is still unknown. Since local inflammation is thought to play a central role in T vaginalis infection, we investigated the in vitro response of human macrophages to naturally mycoplasma-free T vaginalis, as compared to a mycoplasma-infected trichomonad isolate. METHODS: THP-1 cells were stimulated with two isogenic T vaginalis isolates, one naturally mycoplasma-free and one stably associated with M hominis, and secreted cytokines measured by ELISA. Nuclear factor κB (NFκB) involvement in THP-1 response to T vaginalis and M hominis was evaluated by means of a reporter system based on detection of alkaline phosphatase activity. RESULTS: We found that the presence of M hominis upregulates the expression of a panel of proinflammatory cytokines in a synergistic fashion. We also found that the upregulation of the proinflammatory response by THP-1 cells involves the transcription factor NFκB. CONCLUSIONS: These findings suggest that the presence of M hominis in T vaginalis isolates might play a key role in inflammation during trichomoniasis, thus affecting the severity of the disease. The synergistic upregulation of the macrophage proinflammatory response might also affect some important clinical conditions associated with T vaginalis infection, such as the increased risk of acquiring cervical cancer or HIV, which are thought to be affected by the inflammatory milieu during trichomoniasis.


Assuntos
Citocinas/metabolismo , Inflamação/imunologia , Inflamação/patologia , Monócitos/imunologia , Mycoplasma hominis/imunologia , Trichomonas vaginalis/imunologia , Trichomonas vaginalis/microbiologia , Fosfatase Alcalina/análise , Linhagem Celular , Técnicas de Cocultura , Meios de Cultura/química , Ensaio de Imunoadsorção Enzimática , Genes Reporter , Humanos , Monócitos/microbiologia , Monócitos/parasitologia , Mycoplasma hominis/patogenicidade , Mycoplasma hominis/fisiologia , NF-kappa B/metabolismo , Simbiose , Trichomonas vaginalis/patogenicidade , Trichomonas vaginalis/fisiologia
8.
J Immunol Methods ; 382(1-2): 216-9, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22683542

RESUMO

Synthetic peptides are widely used in indirect ELISA to detect and characterize specific antibodies in biological samples. Small peptides are not efficiently immobilized on plastic surfaces by simple adsorption, and the conjugation to carrier proteins with different binding techniques is the method of choice. Common techniques to conjugate peptide antigens to carrier proteins and to subsequently purify such complexes are time consuming, expensive, and occasionally abrogate immunogenicity of peptides. In this report we describe a simple, fast and inexpensive alternative protocol to immobilize synthetic peptides to plastic surfaces for standard ELISA. The technique is based on use of maleimide-activated bovine serum albumin or keyhole limpet hemocyanin as a protein anchor adsorbed on the polystyrene surface of the microtiter plate. Following adsorption of the carrier protein, sulfhydryl-containing peptides are cross-linked with an in-well reaction, allowing their correct orientation and availability to antibody binding, avoiding the time consuming steps needed to purify the hapten-carrier complexes. The immunoreactivity of peptides was tested by using both monoclonal and polyclonal antibodies in standard ELISA assays, and compared with established coating methods.


Assuntos
Ensaio de Imunoadsorção Enzimática/economia , Ensaio de Imunoadsorção Enzimática/métodos , Peptídeos/química , Peptídeos/imunologia , Poliestirenos/química , Anticorpos/imunologia , Proteínas de Transporte/química , Cisteína/química , Maleimidas/química , Propriedades de Superfície
9.
Infect Immun ; 75(2): 810-9, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17101659

RESUMO

Helicobacter pylori causes chronic gastric infection that affects the majority of the world's population. Despite generating an inflammatory response, the immune system usually fails to clear the infection. Since dendritic cells (DCs) play a pivotal role in shaping the immune response, we investigated the effects of H. pylori on DC function. We have demonstrated that H. pylori increased the expression of activation markers on DCs while upregulating the inhibitory B7 family molecule, PD-L1. Functionally, H. pylori-treated DCs resulted in the production of interleukin-10 (IL-10) and IL-23 but not of alpha interferon (IFN-alpha). While very little or no IL-12 was produced to H. pylori alone, simultaneous ligation of CD40 on DCs induced IL-12 release. We also demonstrated that DCs treated with H. pylori-induced IFN-gamma production by allogeneic naive T cells. However, stimulation of DCs with H. pylori for an extended period of time impaired their ability to produce cytokines after CD40 ligation and limited their ability to promote IFN-gamma release, suggesting that the DCs had become exhausted by the prolonged stimulation. The effect of chronic infection with H. pylori on DC function was further investigated by focusing on DC development. Demonstrating that monocytes differentiated into DCs in the presence of H. pylori exhibited an exhausted phenotype with an impaired ability to produce IL-12 and a downregulation of CD1a. Our results raise the possibility that in chronic H. pylori infection DCs become exhausted after prolonged antigen exposure leading to suboptimal Th1 development. This effect may contribute to persistence of H. pylori infection.


Assuntos
Células Dendríticas/imunologia , Infecções por Helicobacter/imunologia , Helicobacter pylori/imunologia , Células Th1/imunologia , Antígenos CD/biossíntese , Antígenos CD1/biossíntese , Antígeno B7-2/biossíntese , Antígeno B7-H1 , Antígenos CD40/biossíntese , Células Cultivadas , Citometria de Fluxo , Antígenos HLA-DR/biossíntese , Humanos , Interferon-alfa/biossíntese , Interferon gama/biossíntese , Interleucina-10/biossíntese , Interleucina-12/biossíntese , Interleucina-23/biossíntese
10.
Immunology ; 116(2): 245-54, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16162273

RESUMO

Dendritic cells produce cytokines that regulate the class of the adaptive immune response. Microbial recognition is mediated, at least in part, by pattern recognition receptors such as Toll-like receptors, which influence dendritic cell maturation. In humans it is not yet clear how intact pathogens modulate the developing immune response. To address the effects of intact pathogens on the maturation and effector functions of human dendritic cells, we investigated their responses to a number of microbial pathogens. We studied a range of micro-organisms including Gram-negative bacteria (Escherichia coli and Salmonella enterica sv. typhimurium), Gram-positive cocci (Staphylococcus aureus) and atypical bacteria (Mycobacterium tuberculosis and Mycoplasma hominis) as well as the human protozoal parasite Trichomonas vaginalis. The micro-organisms were fixed in formaldehyde to prevent replication whilst preserving surface morphology. All the pathogens induced similar up-regulation of dendritic cell activation-associated cell surface markers but there was a profound difference in the patterns of cytokines produced by the stimulated dendritic cells. Some pathogens (E. coli, Salmonella enterica sv. typhimurium and S. aureus) induced interleukin-12 (IL-12), IL-10 and interferon-alpha whereas others (M. tuberculosis, Mycoplasma hominis and T. vaginalis) induced only IL-10. This differential effect was not altered by costimulation of the dendritic cells through CD40. These results support the notion that human dendritic cells are plastic in their response to microbial stimuli and that the nature of the pathogen dictates the response of the dendritic cell.


Assuntos
Antígenos de Bactérias/imunologia , Antígenos de Protozoários/imunologia , Citocinas/biossíntese , Células Dendríticas/imunologia , Animais , Antígenos CD40/imunologia , Diferenciação Celular/imunologia , Células Cultivadas , Humanos , Interferon Tipo I/biossíntese , Interleucina-10/biossíntese , Interleucina-12/biossíntese , Ligantes , Trichomonas vaginalis/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA