Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Cachexia Sarcopenia Muscle ; 14(2): 940-954, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36628607

RESUMO

BACKGROUND: Becker muscular dystrophy (BMD) is a genetic neuromuscular disease of growing importance caused by in-frame, partial loss-of-function mutations in the dystrophin (DMD) gene. BMD presents with reduced severity compared with Duchenne muscular dystrophy (DMD), the allelic disorder of complete dystrophin deficiency. Significant therapeutic advancements have been made in DMD, including four FDA-approved drugs. BMD, however, is understudied and underserved-there are no drugs and few clinical trials. Discordance in therapeutic efforts is due in part to lack of a BMD mouse model which would enable greater understanding of disease and de-risk potential therapeutics before first-in-human trials. Importantly, a BMD mouse model is becoming increasingly critical as emerging DMD dystrophin restoration therapies aim to convert a DMD genotype into a BMD phenotype. METHODS: We use CRISPR/Cas9 technology to generate bmx (Becker muscular dystrophy, X-linked) mice, which express an in-frame ~40 000 bp deletion of exons 45-47 in the murine Dmd gene, reproducing the most common BMD patient mutation. Here, we characterize muscle pathogenesis using molecular and histological techniques and then test skeletal muscle and cardiac function using muscle function assays and echocardiography. RESULTS: Overall, bmx mice present with significant muscle weakness and heart dysfunction versus wild-type (WT) mice, despite a substantial improvement in pathology over dystrophin-null mdx52 mice. bmx mice show impaired motor function in grip strength (-39%, P < 0.0001), wire hang (P = 0.0025), and in vivo as well as ex vivo force assays. In aged bmx, echocardiography reveals decreased heart function through reduced fractional shortening (-25%, P = 0.0036). Additionally, muscle-specific serum CK is increased >60-fold (P < 0.0001), indicating increased muscle damage. Histologically, bmx muscles display increased myofibre size variability (minimal Feret's diameter: P = 0.0017) and centrally located nuclei indicating degeneration/regeneration (P < 0.0001). bmx muscles also display dystrophic pathology; however, levels of the following parameters are moderate in comparison with mdx52: inflammatory/necrotic foci (P < 0.0001), collagen deposition (+1.4-fold, P = 0.0217), and sarcolemmal damage measured by intracellular IgM (P = 0.0878). Like BMD patients, bmx muscles show reduced dystrophin protein levels (~20-50% of WT), whereas Dmd transcript levels are unchanged. At the molecular level, bmx muscles express increased levels of inflammatory genes, inflammatory miRNAs and fibrosis genes. CONCLUSIONS: The bmx mouse recapitulates BMD disease phenotypes with histological, molecular and functional deficits. Importantly, it can inform both BMD pathology and DMD dystrophin restoration therapies. This novel model will enable further characterization of BMD disease progression, identification of biomarkers, identification of therapeutic targets and new preclinical drug studies aimed at developing therapies for BMD patients.


Assuntos
Distrofina , Distrofia Muscular de Duchenne , Animais , Humanos , Camundongos , Distrofina/genética , Distrofina/metabolismo , Éxons/genética , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Oligonucleotídeos Antissenso , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Modelos Animais de Doenças
2.
Inflamm Bowel Dis ; 26(10): 1597-1606, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32793975

RESUMO

BACKGROUND: We sought to identify microRNAs (miRNAs) associated with response to anti-TNF-α or glucocorticoids in children with inflammatory bowel disease (IBD) to generate candidate pharmacodynamic and monitoring biomarkers. METHODS: Clinical response was assessed by Pediatric Crohn's Disease Activity Index and Pediatric Ulcerative Colitis Activity Index. Quantitative real-time polymerase chain reaction via Taqman Low-Density Array cards were used to identify miRNAs in a discovery cohort of responders (n = 11) and nonresponders (n = 8). Seven serum miRNAs associated with clinical response to treatment, along with 4 previously identified (miR-146a, miR-146b, miR-320a, miR-486), were selected for further study. Candidates were assessed in a validation cohort of serum samples from IBD patients pre- and post-treatment and from healthy controls. Expression of miRNA was also analyzed in inflamed mucosal biopsies from IBD patients and non-IBD controls. RESULTS: Discovery cohort analysis identified 7 miRNAs associated with therapeutic response: 5 that decreased (miR-126, miR-454, miR-26b, miR-26a, let-7c) and 2 that increased (miR-636, miR-193b). In the validation cohort, 7 of 11 candidate miRNAs changed in the same direction with response to anti-TNF-α therapies, glucocorticoids, or both. In mucosal biopsies, 7 out of 11 miRNAs were significantly increased in IBD vs healthy controls. CONCLUSIONS: Five candidate miRNAs associated with clinical response and mucosal inflammation in pediatric IBD patients were identified (miR-126, let-7c, miR-146a, miR-146b, and miR-320a). These miRNAs may be further developed as pharmacodynamic and response monitoring biomarkers for use in clinical care and trials.


Assuntos
Colite Ulcerativa/sangue , Doença de Crohn/sangue , Monitoramento de Medicamentos/métodos , MicroRNAs/sangue , Inibidores do Fator de Necrose Tumoral/farmacocinética , Adolescente , Biomarcadores/sangue , Biópsia , Criança , Pré-Escolar , Estudos de Coortes , Colite Ulcerativa/tratamento farmacológico , Doença de Crohn/tratamento farmacológico , Feminino , Humanos , Mucosa Intestinal/patologia , Masculino , Reação em Cadeia da Polimerase em Tempo Real , Adulto Jovem
3.
Front Immunol ; 11: 151, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32153563

RESUMO

MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate important intracellular biological processes. In myasthenia gravis (MG), a disease-specific pattern of elevated circulating miRNAs has been found, and proposed as potential biomarkers. These elevated miRNAs include miR-150-5p, miR-21-5p, and miR-30e-5p in acetylcholine receptor antibody seropositive (AChR+) MG and miR-151a-3p, miR-423-5p, let-7a-5p, and let-7f-5p in muscle-specific tyrosine kinase antibody seropositive (MuSK+) MG. In this study, we examined the regulation of each of these miRNAs using chromatin immunoprecipitation sequencing (ChIP-seq) data from the Encyclopedia of DNA Elements (ENCODE) to gain insight into the transcription factor pathways that drive their expression in MG. Our aim was to look at the transcription factors that regulate miRNAs and then validate some of those in vivo with cell lines that have sufficient expression of these transcription factors This analysis revealed several transcription factor families that regulate MG-specific miRNAs including the Forkhead box or the FOXO proteins (FoxA1, FoxA2, FoxM1, FoxP2), AP-1, interferon regulatory factors (IRF1, IRF3, IRF4), and signal transducer and activator of transcription proteins (Stat1, Stat3, Stat5a). We also found binding sites for nuclear factor of activated T-cells (NFATC1), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), early growth response factor (EGR1), and the estrogen receptor 1 (ESR1). AChR+ MG miRNAs showed a stronger overall regulation by the FOXO transcription factors, and of this group, miR-21-5p, let-7a, and let 7f were found to possess ESR1 binding sites. Using a murine macrophage cell line, we found activation of NF-κB -mediated inflammation by LPS induced expression of miR-21-5p, miR-30e-5p, miR-423-5p, let-7a, and let-7f. Pre-treatment of cells with the anti-inflammatory drugs prednisone or deflazacort attenuated induction of inflammation-induced miRNAs. Interestingly, the activation of inflammation induced packaging of the AChR+-specific miRNAs miR-21-5p and miR-30e-5p into exosomes, suggesting a possible mechanism for the elevation of these miRNAs in MG patient serum. In conclusion, our study summarizes the regulatory transcription factors that drive expression of AChR+ and MuSK+ MG-associated miRNAs. Our findings of elevated miR-21-5p and miR-30e-5p expression in immune cells upon inflammatory stimulation and the suppressive effect of corticosteroids strengthens the putative role of these miRNAs in the MG autoimmune response.


Assuntos
MicroRNA Circulante/genética , MicroRNA Circulante/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Fatores Reguladores de Interferon/metabolismo , Miastenia Gravis/metabolismo , Receptores de Estrogênio/metabolismo , Fatores de Transcrição STAT/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Anticorpos/imunologia , Estudos de Coortes , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Células RAW 264.7 , RNA Mensageiro/genética , Receptores Proteína Tirosina Quinases/imunologia , Receptores Colinérgicos/imunologia , Transdução de Sinais/genética , Linfócitos T/metabolismo
4.
Arthritis Rheumatol ; 72(7): 1170-1183, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32009304

RESUMO

OBJECTIVE: Muscle inflammation is a feature in myositis and Duchenne muscular dystrophy (DMD). Autoimmune mechanisms are thought to contribute to muscle weakness in patients with myositis. However, a lack of correlation between the extent of inflammatory cell infiltration and muscle weakness indicates that nonimmune pathologic mechanisms may play a role. The present study focused on 2 microRNA (miRNA) sets previously identified as being elevated in the muscle of patients with DMD-an "inflammatory" miRNA set that is dampened with glucocorticoids, and a "dystrophin-targeting" miRNA set that inhibits dystrophin translation-to test the hypothesis that these miRNAs are similarly dysregulated in the muscle of patients with myositis, and could contribute to muscle weakness and disease severity. METHODS: A major histocompatibility complex class I-transgenic mouse model of myositis was utilized to study gene and miRNA expression and histologic features in the muscle tissue, with the findings validated in human muscle biopsy tissue from 6 patients with myositis. Mice were classified as having mild or severe myositis based on transgene expression, body weight, histologic disease severity, and muscle strength/weakness. RESULTS: In mice with severe myositis, muscle tissue showed mononuclear cell infiltration along with elevated expression of type I interferon and NF-κB-regulated genes, including Tlr7 (3.8-fold increase, P < 0.05). Furthermore, mice with severe myositis showed elevated expression of inflammatory miRNAs (miR-146a, miR-142-3p, miR-142-5p, miR-455-3p, and miR-455-5p; ~3-40-fold increase, P < 0.05) and dystrophin-targeting miRNAs (miR-146a, miR-146b, miR-31, and miR-223; ~3-38-fold increase, P < 0.05). Bioinformatics analyses of chromatin immunoprecipitation sequencing (ChIP-seq) data identified at least one NF-κB consensus element within the promoter/enhancer regions of these miRNAs. Western blotting and immunofluorescence analyses of the muscle tissue from mice with severe myositis demonstrated reduced levels of dystrophin. In addition, elevated levels of NF-κB-regulated genes, TLR7, and miRNAs along with reduced dystrophin levels were observed in muscle biopsy tissue from patients with histologically severe myositis. CONCLUSION: These data demonstrate that an acquired dystrophin deficiency may occur through NF-κB-regulated miRNAs in myositis, thereby suggesting a unifying theme in which muscle injury, inflammation, and weakness are perpetuated both in myositis and in DMD.


Assuntos
Distrofina/metabolismo , MicroRNAs/genética , Debilidade Muscular/genética , Músculo Esquelético/metabolismo , Miosite/genética , Animais , Sequenciamento de Cromatina por Imunoprecipitação , Antígenos de Histocompatibilidade Classe I/genética , Humanos , Interferon Tipo I/genética , Interferon Tipo I/metabolismo , Camundongos , Camundongos Transgênicos , MicroRNAs/metabolismo , Debilidade Muscular/metabolismo , Miosite/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Índice de Gravidade de Doença , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo
5.
Life Sci Alliance ; 2(1)2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30745312

RESUMO

Cardiomyopathy is a leading cause of death for Duchenne muscular dystrophy. Here, we find that the mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) can share common ligands but play distinct roles in dystrophic heart and skeletal muscle pathophysiology. Comparisons of their ligand structures indicate that the Δ9,11 modification of the first-in-class drug vamorolone enables it to avoid interaction with a conserved receptor residue (N770/N564), which would otherwise activate transcription factor properties of both receptors. Reporter assays show that vamorolone and eplerenone are MR antagonists, whereas prednisolone is an MR agonist. Macrophages, cardiomyocytes, and CRISPR knockout myoblasts show vamorolone is also a dissociative GR ligand that inhibits inflammation with improved safety over prednisone and GR-specific deflazacort. In mice, hyperaldosteronism activates MR-driven hypertension and kidney phenotypes. We find that genetic dystrophin loss provides a second hit for MR-mediated cardiomyopathy in Duchenne muscular dystrophy model mice, as aldosterone worsens fibrosis, mass and dysfunction phenotypes. Vamorolone successfully prevents MR-activated phenotypes, whereas prednisolone activates negative MR and GR effects. In conclusion, vamorolone targets dual nuclear receptors to treat inflammation and cardiomyopathy with improved safety.


Assuntos
Anti-Inflamatórios/uso terapêutico , Cardiomiopatias/tratamento farmacológico , Antagonistas de Receptores de Mineralocorticoides/uso terapêutico , Miocardite/tratamento farmacológico , Pregnadienodiois/uso terapêutico , Receptores de Glucocorticoides/efeitos dos fármacos , Receptores de Mineralocorticoides/efeitos dos fármacos , Aldosterona/química , Aldosterona/farmacologia , Aldosterona/uso terapêutico , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Proteína 9 Associada à CRISPR/genética , Simulação por Computador , Modelos Animais de Doenças , Eplerenona/química , Eplerenona/farmacologia , Eplerenona/uso terapêutico , Técnicas de Inativação de Genes , Ligação de Hidrogênio , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Antagonistas de Receptores de Mineralocorticoides/química , Antagonistas de Receptores de Mineralocorticoides/farmacologia , Distrofia Muscular de Duchenne/tratamento farmacológico , Miocardite/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Prednisolona/química , Prednisolona/farmacologia , Prednisolona/uso terapêutico , Pregnadienodiois/química , Pregnadienodiois/farmacologia , Células RAW 264.7 , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/genética , Receptores de Mineralocorticoides/agonistas , Receptores de Mineralocorticoides/química
6.
Nat Commun ; 8(1): 941, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-29038471

RESUMO

Exon skipping is a promising therapeutic strategy for Duchenne muscular dystrophy (DMD), employing morpholino antisense oligonucleotides (PMO-AO) to exclude disruptive exons from the mutant DMD transcript and elicit production of truncated dystrophin protein. Clinical trials for PMO show variable and sporadic dystrophin rescue. Here, we show that robust PMO uptake and efficient production of dystrophin following PMO administration coincide with areas of myofiber regeneration and inflammation. PMO localization is sustained in inflammatory foci where it enters macrophages, actively differentiating myoblasts and newly forming myotubes. We conclude that efficient PMO delivery into muscle requires two concomitant events: first, accumulation and retention of PMO within inflammatory foci associated with dystrophic lesions, and second, fusion of PMO-loaded myoblasts into repairing myofibers. Identification of these factors accounts for the variability in clinical trials and suggests strategies to improve this therapeutic approach to DMD.Exon skipping is a strategy for the treatment of Duchenne muscular dystrophy, but has variable efficacy. Here, the authors show that dystrophin restoration occurs preferentially in areas of myofiber regeneration, where antisense oligonucleotides are stored in macrophages and delivered to myoblasts and newly formed myotubes.


Assuntos
Distrofina/genética , Macrófagos/metabolismo , Morfolinos/uso terapêutico , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular de Duchenne/terapia , Mioblastos/metabolismo , Oligonucleotídeos Antissenso/uso terapêutico , Animais , Modelos Animais de Doenças , Éxons , Técnicas de Transferência de Genes , Terapia Genética , Camundongos
7.
Clin Transl Gastroenterol ; 7(9): e192, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27628422

RESUMO

OBJECTIVE: Serum biomarkers may serve to predict early response to therapy, identify relapse, and facilitate drug development in inflammatory bowel disease (IBD). Biomarkers are particularly important in children, in whom achieving early remission and minimizing procedures are especially beneficial. METHODS: We profiled protein and micro RNA (miRNA) in serum from patients pre- and post-therapy, to identify molecular markers of pharmacodynamic effect. Serum was obtained from children with IBD before and after treatment with either corticosteroids (prednisone; n=12) or anti-tumor necrosis factor-α biologic (infliximab; n=7). Over 1,100 serum proteins were assayed using aptamer-based SOMAscan proteomics, and 22 miRNAs analyzed by quantitative real time PCR. Concordance of longitudinal changes between the groups was used to identify markers responsive to treatment. Bioinformatic analysis was used to build insight into mechanisms of changes in response to treatment. RESULTS: We identified 18 proteins and three miRNAs responsive to both prednisone and infliximab. Eight markers that decreased are associated with inflammation and have gene promoters regulated by nuclear factor (NF)-κB. Several that increased are associated with resolving inflammation and tissue damage. We also identified six markers that appear to be steroid-specific, three of which have glucocorticoid receptor binding elements in their promoter region. CONCLUSIONS: Serum markers regulated by the inflammatory transcription factor NF-κB are potential candidates for pharmacodynamic biomarkers that, if correlated with later outcomes like endoscopic or histologic healing, could be used to monitor treatment, optimize dosing, and enhance drug development. The pharmacodynamic biomarkers identified here hold potential to improve both clinical care and drug development. Further studies are warranted to investigate these markers as early predictors of response, or possibly surrogate outcomes.

8.
Mol Cancer Res ; 14(10): 994-1008, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27358110

RESUMO

Stat5a is a transcription factor utilized by several cytokine/hormone receptor signaling pathways that promotes transcription of genes associated with proliferation, differentiation, and survival of cancer cells. However, there are currently no clinically approved therapies that directly target Stat5a, despite ample evidence that it contributes to breast cancer pathogenesis. Here, deacetylation of the Stat5a coactivator and chromatin-remodeling protein HMGN2 on lysine residue K2 by HDAC6 promotes Stat5a-mediated transcription and breast cancer growth. HDAC6 inhibition both in vitro and in vivo enhances HMGN2 acetylation with a concomitant reduction in Stat5a-mediated signaling, resulting in an inhibition of breast cancer growth. Furthermore, HMGN2 is highly acetylated at K2 in normal human breast tissue, but is deacetylated in primary breast tumors and lymph node metastases, suggesting that targeting HMGN2 deacetylation is a viable treatment for breast cancer. Together, these results reveal a novel mechanism by which HDAC6 activity promotes the transcription of Stat5a target genes and demonstrate utility of HDAC6 inhibition for breast cancer therapy. IMPLICATIONS: HMGN2 deacetylation enhances Stat5a transcriptional activity, thereby regulating prolactin-induced gene transcription and breast cancer growth. Mol Cancer Res; 14(10); 994-1008. ©2016 AACR.


Assuntos
Neoplasias da Mama/patologia , Proteína HMGN2/metabolismo , Histona Desacetilases/metabolismo , Fator de Transcrição STAT5/genética , Transcrição Gênica , Proteínas Supressoras de Tumor/genética , Acetilação , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Desacetilase 6 de Histona , Humanos , Lisina/metabolismo , Células MCF-7 , Camundongos , Metástase Neoplásica , Transplante de Neoplasias
9.
Skelet Muscle ; 5: 44, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26634117

RESUMO

BACKGROUND: Systemic delivery of anti-sense oligonucleotides to Duchenne muscular dystrophy (DMD) patients to induce de novo dystrophin protein expression in muscle (exon skipping) is a promising therapy. Treatment with Phosphorodiamidate morpholino oligomers (PMO) lead to shorter de novo dystrophin protein in both animal models and DMD boys who otherwise lack dystrophin; however, restoration of dystrophin has been observed to be highly variable. Understanding the factors causing highly variable induction of dystrophin expression in pre-clinical models would likely lead to more effective means of exon skipping in both pre-clinical studies and human clinical trials. METHODS: In the present study, we investigated possible factors that might lead to the variable success of exon skipping using morpholino drugs in the mdx mouse model. We tested whether specific muscle groups or fiber types showed better success than others and also correlated residual PMO concentration in muscle with the amount of de novo dystrophin protein 1 month after a single high-dose morpholino injection (800 mg/kg). We compared the results from six muscle groups using three different methods of dystrophin quantification: immunostaining, immunoblotting, and mass spectrometry assays. RESULTS: The triceps muscle showed the greatest degree of rescue (average 38±28 % by immunostaining). All three dystrophin detection methods were generally concordant for all muscles. We show that dystrophin rescue occurs in a sporadic patchy pattern with high geographic variability across muscle sections. We did not find a correlation between residual morpholino drug in muscle tissue and the degree of dystrophin expression. CONCLUSIONS: While we found some evidence of muscle group enhancement and successful rescue, our data also suggest that other yet-undefined factors may underlie the observed variability in the success of exon skipping. Our study highlights the challenges associated with quantifying dystrophin in clinical trials where a single small muscle biopsy is taken from a DMD patient.

10.
Cell Rep ; 12(10): 1678-90, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26321630

RESUMO

The amount and distribution of dystrophin protein in myofibers and muscle is highly variable in Becker muscular dystrophy and in exon-skipping trials for Duchenne muscular dystrophy. Here, we investigate a molecular basis for this variability. In muscle from Becker patients sharing the same exon 45-47 in-frame deletion, dystrophin levels negatively correlate with microRNAs predicted to target dystrophin. Seven microRNAs inhibit dystrophin expression in vitro, and three are validated in vivo (miR-146b/miR-374a/miR-31). microRNAs are expressed in dystrophic myofibers and increase with age and disease severity. In exon-skipping-treated mdx mice, microRNAs are significantly higher in muscles with low dystrophin rescue. TNF-α increases microRNA levels in vitro whereas NFκB inhibition blocks this in vitro and in vivo. Collectively, these data show that microRNAs contribute to variable dystrophin levels in muscular dystrophy. Our findings suggest a model where chronic inflammation in distinct microenvironments induces pathological microRNAs, initiating a self-sustaining feedback loop that exacerbates disease progression.


Assuntos
Distrofina/genética , MicroRNAs/genética , Distrofia Muscular de Duchenne/metabolismo , Fator de Necrose Tumoral alfa/fisiologia , Regiões 3' não Traduzidas , Animais , Sequência de Bases , Sítios de Ligação , Cães , Distrofina/metabolismo , Expressão Gênica , Humanos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/imunologia , Interferência de RNA , Ativação Transcricional
11.
Am J Pathol ; 182(1): 217-33, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23159947

RESUMO

The polypeptide hormone prolactin (PRL) stimulates breast epithelial cell growth, differentiation, and motility through its cognate receptor, PRLr. PRLr is expressed in most breast cancers; however, its exact role remains elusive. Our laboratory previously described a novel mode of PRLr signaling in which Stat5a-mediated transcription is regulated through ligand-induced phosphorylation of the PRLr transactivation domain (TAD). Herein, we used a PRLr transactivation-deficient mutant (PRLrYDmut) to identify novel TAD-specific target genes. Microarray analysis identified 120 PRL-induced genes up-regulated by wild type but not PRLrYDmut. Compared with control, PRLr expression significantly induced expression of approximately 4700 PRL-induced genes, whereas PRLrYDmut ablated induction of all but 19 of these genes. Ingenuity pathway analysis found that the PRLr TAD most profoundly affected networks involving cancer and proliferation. In support of this, PRLrYDmut expression reduced anchorage-dependent and anchorage-independent growth. In addition, pathway analysis identified a link between the PRLr TAD and the estrogen and progesterone receptors (ERα/PR). Although neither ERα nor PR was identified as a PRL target gene, a TAD mutation significantly impaired ERα/PR expression and estrogen responsiveness. TMA analysis revealed a marked increase in nuclear, but not cytoplasmic, PRLr TAD phosphorylation as a function of neoplastic progression. We propose that PRLr TAD phosphorylation contributes to breast cancer pathogenesis, in part through regulation of ERα and PR, and has potential utility as a biomarker in this disease.


Assuntos
Neoplasias da Mama/genética , Receptor alfa de Estrogênio/biossíntese , Receptores de Progesterona/biossíntese , Receptores da Prolactina/genética , Ativação Transcricional/genética , Biomarcadores Tumorais/biossíntese , Biomarcadores Tumorais/genética , Neoplasias da Mama/metabolismo , Transformação Celular Neoplásica/genética , Progressão da Doença , Regulação para Baixo/efeitos dos fármacos , Receptor alfa de Estrogênio/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Genes Neoplásicos , Humanos , Mutação , Proteínas de Neoplasias/biossíntese , Proteínas de Neoplasias/genética , Fosforilação/genética , Prognóstico , Prolactina/farmacologia , Receptores de Progesterona/genética , Receptores da Prolactina/biossíntese , Análise Serial de Tecidos/métodos , Células Tumorais Cultivadas , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética
12.
Mol Endocrinol ; 25(12): 2054-64, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21964595

RESUMO

The molecular mechanisms that modulate the activity of the signal transducers and activators of transcription 5 (Stat5) during the progression of breast cancer remain elusive. Here, we present evidence that the calcineurin/nuclear factor of activated T cells (NFAT) pathway negatively regulates the activation of Stat5, and vice versa in breast cancer. NFAT1 interacts with Stat5 in breast cancer cells, and their physical association is mediated by the DNA binding and transactivation domains of Stat5. Ectopically expressed NFAT1 is capable of inhibiting Stat5-dependent functions, including Stat5 transactivation, Stat5-mediated transcription of the downstream target gene expression, and binding of Stat5a to the Stat5 target promoter. By contrast, overexpression of a selective NFAT inhibitor VIVIT reversed NFAT1-mediated suppression of Stat5-dependent gene expression, whereas silencing of NFAT1 through RNA interference enhanced prolactin-induced, Stat5-mediated gene transcription, and breast cancer cell proliferation. A reciprocal inhibitory effect of Stat5 activity on NFAT1 signaling was also observed, implying these two signaling cascades antagonize each other in breast cancer. Importantly, analysis of a matched breast cancer progression tissue microarray revealed a negative correlation between levels of NFAT1 and Stat5 (pY694) during the progression of breast cancer. Taken together, these studies highlight a novel negative cross talk between the NFAT1- and Stat5-signaling cascades that may affect breast tumor formation, growth, and metastasis.


Assuntos
Neoplasias da Mama/metabolismo , Fatores de Transcrição NFATC/metabolismo , Receptor Cross-Talk , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Retroalimentação Fisiológica , Feminino , Regulação Neoplásica da Expressão Gênica , Genes Reporter , Humanos , Luciferases de Renilla/biossíntese , Luciferases de Renilla/genética , Linfonodos/metabolismo , Linfonodos/patologia , Metástase Linfática , Fatores de Transcrição NFATC/química , Fosforilação , Regiões Promotoras Genéticas , Ligação Proteica , Estrutura Terciária de Proteína , Fator de Transcrição STAT5/química , Análise Serial de Tecidos , Ativação Transcricional
13.
Mol Endocrinol ; 25(9): 1550-64, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21816901

RESUMO

The direct actions of transmembrane receptors within the nucleus remain enigmatic. In this report, we demonstrate that the prolactin receptor (PRLr) localizes to the nucleus where it functions as a coactivator through its interactions with the latent transcription factor signal transducer and activator of transcription 5a (Stat5a) and the high-mobility group N2 protein (HMGN2). We identify a novel transactivation domain within the PRLr that is activated by ligand-induced phosphorylation, an event coupled to HMGN2 binding. The association of the PRLr with HMGN2 enables Stat5a-responsive promoter binding, thus facilitating transcriptional activation and promoting anchorage-independent growth. We propose that HMGN2 serves as a critical regulatory factor in Stat5a-driven gene expression by facilitating the assembly of PRLr/Stat5a onto chromatin and that these events may serve to promote biological events that contribute to a tumorigenic phenotype. Our data imply that phosphorylation may be the molecular switch that activates a cell surface receptor transactivation domain, enabling it to tether chromatin-modifying factors, such as HMGN2, to target promoter regions in a sequence-specific manner.


Assuntos
Núcleo Celular/metabolismo , Proteína HMGN2/metabolismo , Receptores da Prolactina/química , Receptores da Prolactina/metabolismo , Fator de Transcrição STAT5/metabolismo , Transcrição Gênica , Ativação Transcricional/genética , Proteínas Supressoras de Tumor/metabolismo , Sequência de Aminoácidos , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Modelos Biológicos , Dados de Sequência Molecular , Fenótipo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico
14.
J Mol Endocrinol ; 44(6): 319-29, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20237142

RESUMO

The effects of prolactin (PRL) during the pathogenesis of breast cancer are mediated in part though Stat5 activity enhanced by its interaction with its transcriptional inducer, the prolyl isomerase cyclophilin B (CypB). We have demonstrated that knockdown of CypB decreases cell growth, proliferation, and migration, and CypB expression is associated with malignant progression of breast cancer. In this study, we examined the effect of CypB knockdown on PRL signaling in breast cancer cells. CypB knockdown with two independent siRNAs was shown to impair PRL-induced reporter expression in breast cancer cell line. cDNA microarray analysis was performed on these cells to assess the effect of CypB reduction, and revealed a significant decrease in PRL-induced endogenous gene expression in two breast cancer cell lines. Parallel functional assays revealed corresponding alterations of both anchorage-independent cell growth and cell motility of breast cancer cells. Our results demonstrate that CypB expression levels significantly modulate PRL-induced function in breast cancer cells ultimately resulting in enhanced levels of PRL-responsive gene expression, cell growth, and migration. Given the increasingly appreciated role of PRL in the pathogenesis of breast cancer, the actions of CypB detailed here are of biological significance.


Assuntos
Neoplasias da Mama/enzimologia , Ciclofilinas/metabolismo , Regulação Neoplásica da Expressão Gênica , Prolactina/metabolismo , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Movimento Celular , Ciclofilinas/genética , Feminino , Perfilação da Expressão Gênica , Humanos , Fator de Transcrição STAT5/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA