Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 216: 115776, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37659739

RESUMO

The farnesoid-x-receptor (FXR) and the G protein bile acid activated receptor (GPBAR)1 are two bile acid activated receptors highly expressed in entero-hepatic, immune, adipose and cardiovascular tissues. FXR and GPBAR1 are clinically validated targets in the treatment of metabolic disorders and FXR agonists are currently trialled in patients with non-alcoholic steato-hepatitis (NASH). Results of these trials, however, have raised concerns over safety and efficacy of selective FXR ligands suggesting that the development of novel agent designed to impact on multiple targets might have utility in the treatment of complex, multigenic, disorders. Harnessing on FXR and GPBAR1 agonists, several novel hybrid molecules have been developed, including dual FXR and GPBAR1 agonists and antagonists, while exploiting the flexibility of FXR agonists toward other nuclear receptors, dual FXR and peroxisome proliferators-activated receptors (PPARs) and liver-X-receptors (LXRs) and Pregnane-X-receptor (PXR) agonists have been reported. In addition, modifications of FXR agonists has led to the discovery of dual FXR agonists and fatty acid binding protein (FABP)1 and Leukotriene B4 hydrolase (LTB4H) inhibitors. The GPBAR1 binding site has also proven flexible to accommodate hybrid molecules functioning as GPBAR1 agonist and cysteinyl leukotriene receptor (CYSLTR)1 antagonists, as well as dual GPBAR1 agonists and retinoid-related orphan receptor (ROR)γt antagonists, dual GPBAR1 agonist and LXR antagonists and dual GPBAR1 agonists endowed with inhibitory activity on dipeptidyl peptidase 4 (DPP4). In this review we have revised the current landscape of FXR and GPBAR1 based hybrid agents focusing on their utility in the treatment of metabolic associated liver disorders.


Assuntos
Ácidos e Sais Biliares , Doenças Metabólicas , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Citoplasmáticos e Nucleares , Fígado/metabolismo , Doenças Metabólicas/tratamento farmacológico
2.
Hepatology ; 78(1): 26-44, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36107019

RESUMO

BACKGROUND AND AIM: Drug-induced liver injury (DILI) is a common disorder that involves both direct liver cell toxicity and immune activation. The bile acid receptor, G-protein-coupled bile acid receptor 1 (GPBAR1; Takeda G-protein-coupled receptor 5 [TGR5]), and cysteinyl leukotriene receptor (CYSLTR) 1 are G-protein-coupled receptors activated by bile acids and leukotrienes, exerting opposite effects on cell-to-cell adhesion, inflammation, and immune cell activation. To investigate whether GPBAR1 and CYSLTR1 mutually interact in the development of DILI, we developed an orally active small molecule, CHIN117, that functions as a GPBAR1 agonist and CYSLTR1 antagonist. APPROACH AND RESULTS: RNA-sequencing analysis of liver explants showed that acetaminophen (APAP) intoxication positively modulates the leukotriene pathway, CYSLTR1, 5-lipoxygenase, and 5-lipoxygenase activating protein, whereas GPBAR1 gene expression was unchanged. In mice, acute liver injury induced by orally dosing APAP (500 mg/kg) was severely exacerbated by Gpbar1 gene ablation and attenuated by anti-Cysltr1 small interfering RNA pretreatment. Therapeutic dosing of wild-type mice with CHIN117 reversed the liver damage caused by APAP and modulated up to 1300 genes, including 38 chemokines and receptors, that were not shared by dosing mice with a selective GPBAR1 agonist or CYSLTR1 antagonist. Coexpression of the two receptors was detected in liver sinusoidal endothelial cells (LSECs), monocytes, and Kupffer cells, whereas combinatorial modulation of CYSLTR1 and GPBAR1 potently reversed LSEC/monocyte interactions. CHIN117 reversed liver damage and liver fibrosis in mice administered CCl 4 . CONCLUSIONS: By genetic and pharmacological approaches, we demonstrated that GPBAR1 and CYSLTR1 mutually interact in the development of DILI. A combinatorial approach designed to activate GPBAR1 while inhibiting CYSLTR1 reverses liver injury in models of DILI.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Hepatopatias , Camundongos , Animais , Ácidos e Sais Biliares/metabolismo , Araquidonato 5-Lipoxigenase/metabolismo , Células Endoteliais/metabolismo , Acetaminofen/toxicidade , Receptores Acoplados a Proteínas G/metabolismo , Hepatopatias/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Leucotrienos/metabolismo , Proteínas de Ligação ao GTP/metabolismo
3.
Front Pharmacol ; 13: 858137, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35559268

RESUMO

Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are two highly prevalent human diseases caused by excessive fat deposition in the liver. Although multiple approaches have been suggested, NAFLD/NASH remains an unmet clinical need. Here, we report the discovery of a novel class of hybrid molecules designed to function as cysteinyl leukotriene receptor 1 (CysLT1R) antagonists and G protein bile acid receptor 1 (GPBAR1/TGR5) agonists for the treatment of NAFLD/NASH. The most potent of these compounds generated by harnessing the scaffold of the previously described CystLT1R antagonists showed efficacy in reversing liver histopathology features in a preclinical model of NASH, reshaping the liver transcriptome and the lipid and energy metabolism in the liver and adipose tissues. In summary, the present study described a novel orally active dual CysLT1R antagonist/GPBAR1 agonist that effectively protects against the development of NAFLD/NASH, showing promise for further development.

4.
J Med Chem ; 64(22): 16512-16529, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34767347

RESUMO

G-protein-coupled receptors (GPCRs) are the molecular target of 40% of marketed drugs and the most investigated structures to develop novel therapeutics. Different members of the GPCRs superfamily can modulate the same cellular process acting on diverse pathways, thus representing an attractive opportunity to achieve multitarget drugs with synergic pharmacological effects. Here, we present a series of compounds with dual activity toward cysteinyl leukotriene receptor 1 (CysLT1R) and G-protein-coupled bile acid receptor 1 (GPBAR1). They are derivatives of REV5901─the first reported dual compound─with therapeutic potential in the treatment of colitis and other inflammatory processes. We report the binding mode of the most active compounds in the two GPCRs, revealing unprecedented structural basis for future drug design studies, including the presence of a polar group opportunely spaced from an aromatic ring in the ligand to interact with Arg792.60 of CysLT1R and achieve dual activity.


Assuntos
Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores de Leucotrienos/efeitos dos fármacos , Animais , Colite/tratamento farmacológico , Humanos , Leucotrieno D4/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos , Simulação de Acoplamento Molecular , Ligação Proteica , Células RAW 264.7 , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Leucotrienos/metabolismo , Relação Estrutura-Atividade
5.
EMBO J ; 40(10): e106503, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-33934390

RESUMO

The primary cilium is a microtubule-based sensory organelle that dynamically links signalling pathways to cell differentiation, growth, and development. Genetic defects of primary cilia are responsible for genetic disorders known as ciliopathies. Orofacial digital type I syndrome (OFDI) is an X-linked congenital ciliopathy caused by mutations in the OFD1 gene and characterized by malformations of the face, oral cavity, digits and, in the majority of cases, polycystic kidney disease. OFD1 plays a key role in cilium biogenesis. However, the impact of signalling pathways and the role of the ubiquitin-proteasome system (UPS) in the control of OFD1 stability remain unknown. Here, we identify a novel complex assembled at centrosomes by TBC1D31, including the E3 ubiquitin ligase praja2, protein kinase A (PKA), and OFD1. We show that TBC1D31 is essential for ciliogenesis. Mechanistically, upon G-protein-coupled receptor (GPCR)-cAMP stimulation, PKA phosphorylates OFD1 at ser735, thus promoting OFD1 proteolysis through the praja2-UPS circuitry. This pathway is essential for ciliogenesis. In addition, a non-phosphorylatable OFD1 mutant dramatically affects cilium morphology and dynamics. Consistent with a role of the TBC1D31/praja2/OFD1 axis in ciliogenesis, alteration of this molecular network impairs ciliogenesis in vivo in Medaka fish, resulting in developmental defects. Our findings reveal a multifunctional transduction unit at the centrosome that links GPCR signalling to ubiquitylation and proteolysis of the ciliopathy protein OFD1, with important implications on cilium biology and development. Derangement of this control mechanism may underpin human genetic disorders.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/genética , Humanos , Oryzias , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
6.
Biochem Pharmacol ; 188: 114564, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33872570

RESUMO

The severe acute respiratory syndrome (SARS)-CoV-2 is the pathogenetic agent of Corona Virus Induced Disease (COVID)19. The virus enters the human cells after binding to the angiotensin converting enzyme (ACE)2 receptor in target tissues. ACE2 expression is induced in response to inflammation. The colon expression of ACE2 is upregulated in patients with inflammatory bowel disease (IBD), highlighting a potential risk of intestinal inflammation in promoting viral entry in the human body. Because mechanisms that regulate ACE2 expression in the intestine are poorly understood and there is a need of anti-SARS-CoV-2 therapies, we have settled to investigate whether natural flavonoids might regulate the expression of Ace2 in intestinal models of inflammation. The results of these studies demonstrated that pelargonidin activates the Aryl hydrocarbon Receptor (AHR) in vitro and reverses intestinal inflammation caused by chronic exposure to high fat diet or to the intestinal braking-barrier agent TNBS in a AhR-dependent manner. In these two models, development of colon inflammation associated with upregulation of Ace2 mRNA expression. Colon levels of Ace2 mRNA were directly correlated with Tnf-α mRNA levels. Molecular docking studies suggested that pelargonidin binds a fatty acid binding pocket on the receptor binding domain of SARS-CoV-2 Spike protein. In vitro studies demonstrated that pelargonidin significantly reduces the binding of SARS-CoV-2 Spike protein to ACE2 and reduces the SARS-CoV-2 replication in a concentration-dependent manner. In summary, we have provided evidence that a natural flavonoid might hold potential in reducing intestinal inflammation and ACE2 induction in the inflamed colon in a AhR-dependent manner.


Assuntos
Enzima de Conversão de Angiotensina 2/biossíntese , Antocianinas/farmacologia , Descoberta de Drogas/métodos , Regulação Enzimológica da Expressão Gênica , Receptores de Hidrocarboneto Arílico/agonistas , SARS-CoV-2/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/genética , Animais , Antocianinas/química , Chlorocebus aethiops , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores de Hidrocarboneto Arílico/metabolismo , SARS-CoV-2/metabolismo , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA