Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Gut ; 73(8): 1321-1335, 2024 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-38670629

RESUMO

OBJECTIVE: The dysregulation of the axon guidance pathway is common in pancreatic ductal adenocarcinoma (PDAC), yet our understanding of its biological relevance is limited. Here, we investigated the functional role of the axon guidance cue SEMA3A in supporting PDAC progression. DESIGN: We integrated bulk and single-cell transcriptomic datasets of human PDAC with in situ hybridisation analyses of patients' tissues to evaluate SEMA3A expression in molecular subtypes of PDAC. Gain and loss of function experiments in PDAC cell lines and organoids were performed to dissect how SEMA3A contributes to define a biologically aggressive phenotype. RESULTS: In PDAC tissues, SEMA3A is expressed by stromal elements and selectively enriched in basal-like/squamous epithelial cells. Accordingly, expression of SEMA3A in PDAC cells is induced by both cell-intrinsic and cell-extrinsic determinants of the basal-like phenotype. In vitro, SEMA3A promotes cell migration as well as anoikis resistance. At the molecular level, these phenotypes are associated with increased focal adhesion kinase signalling through canonical SEMA3A-NRP1 axis. SEMA3A provides mouse PDAC cells with greater metastatic competence and favours intratumoural infiltration of tumour-associated macrophages and reduced density of T cells. Mechanistically, SEMA3A functions as chemoattractant for macrophages and skews their polarisation towards an M2-like phenotype. In SEMA3Ahigh tumours, depletion of macrophages results in greater intratumour infiltration by CD8+T cells and better control of the disease from antitumour treatment. CONCLUSIONS: Here, we show that SEMA3A is a stress-sensitive locus that promotes the malignant phenotype of basal-like PDAC through both cell-intrinsic and cell-extrinsic mechanisms.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Fenótipo , Semaforina-3A , Animais , Humanos , Camundongos , Orientação de Axônios/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Neuropilina-1/metabolismo , Neuropilina-1/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Semaforina-3A/metabolismo , Semaforina-3A/genética , Transdução de Sinais
3.
Front Endocrinol (Lausanne) ; 14: 999792, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37082125

RESUMO

Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are rare and highly heterogeneous neoplasms whose incidence has markedly increased over the last decades. A grading system based on the tumor cells' proliferation index predicts high-risk for G3 NETs. However, low-to-intermediate grade (G1/G2) NETs have an unpredictable clinical course that varies from indolent to highly malignant. Cultures of human cancer cells enable to perform functional perturbation analyses that are instrumental to enhance our understanding of cancer biology. To date, no tractable and reliable long-term culture of G1/G2 NET has been reported to permit disease modeling and pharmacological screens. Here, we report of the first long-term culture of a G2 metastatic small intestinal NET that preserves the main genetic drivers of the tumor and retains expression patterns of the endocrine cell lineage. Replicating the tissue, this long-term culture showed a low proliferation index, and yet it could be propagated continuously without dramatic changes in the karyotype. The model was readily available for pharmacological screens using targeted agents and as expected, showed low tumorigenic capacity in vivo. Overall, this is the first long-term culture of NETs to faithfully recapitulate many aspects of the original neuroendocrine tumor.


Assuntos
Tumores Neuroendócrinos , Humanos , Tumores Neuroendócrinos/patologia , Prognóstico , Gradação de Tumores , Antígeno Ki-67/metabolismo , Receptores Proteína Tirosina Quinases
4.
Oncogene ; 41(38): 4371-4384, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35963908

RESUMO

Transcriptomic analyses of pancreatic ductal adenocarcinoma (PDAC) have identified two major epithelial subtypes with distinct biology and clinical behaviours. Here, we aimed to clarify the role of FGFR1 and FGFR4 in the definition of aggressive PDAC phenotypes. We found that the expression of FGFR4 is exclusively detected in epithelial cells, significantly elevated in the classical PDAC subtype, and associates with better outcomes. In highly aggressive basal-like/squamous PDAC, reduced FGFR4 expression aligns with hypermethylation of the gene and lower levels of histone marks associated with active transcription in its regulatory regions. Conversely, FGFR1 has more promiscuous expression in both normal and malignant pancreatic tissues and is strongly associated with the EMT phenotype but not with the basal-like cell lineage. Regardless of the genetic background, the increased proliferation of FGFR4-depleted PDAC cells correlates with hyperactivation of the mTORC1 pathway both in vitro and in vivo. Downregulation of FGFR4 in classical cell lines invariably leads to the enrichment of basal-like/squamous gene programs and is associated with either partial or full switch of phenotype. In sum, we show that endogenous levels of FGFR4 limit the malignant phenotype of PDAC cells. Finally, we propose FGFR4 as a valuable marker for the stratification of PDAC patients.


Assuntos
Carcinoma Ductal Pancreático , Carcinoma de Células Escamosas , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/patologia , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Neoplasias Pancreáticas/patologia , Fenótipo , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Neoplasias Pancreáticas
5.
Nat Commun ; 12(1): 6850, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824242

RESUMO

The molecular mechanisms that drive hematopoietic stem cell functional decline under conditions of telomere shortening are not completely understood. In light of recent advances in single-cell technologies, we sought to redefine the transcriptional and epigenetic landscape of mouse and human hematopoietic stem cells under telomere attrition, as induced by pathogenic germline variants in telomerase complex genes. Here, we show that telomere attrition maintains hematopoietic stem cells under persistent metabolic activation and differentiation towards the megakaryocytic lineage through the cell-intrinsic upregulation of the innate immune signaling response, which directly compromises hematopoietic stem cells' self-renewal capabilities and eventually leads to their exhaustion. Mechanistically, we demonstrate that targeting members of the Ifi20x/IFI16 family of cytosolic DNA sensors using the oligodeoxynucleotide A151, which comprises four repeats of the TTAGGG motif of the telomeric DNA, overcomes interferon signaling activation in telomere-dysfunctional hematopoietic stem cells and these cells' skewed differentiation towards the megakaryocytic lineage. This study challenges the historical hypothesis that telomere attrition limits the proliferative potential of hematopoietic stem cells by inducing apoptosis, autophagy, or senescence, and suggests that targeting IFI16 signaling axis might prevent hematopoietic stem cell functional decline in conditions affecting telomere maintenance.


Assuntos
Hematopoese/fisiologia , Encurtamento do Telômero/fisiologia , Animais , Transtornos da Insuficiência da Medula Óssea/genética , Transtornos da Insuficiência da Medula Óssea/metabolismo , Transtornos da Insuficiência da Medula Óssea/patologia , Autorrenovação Celular , Reprogramação Celular , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Interferons/metabolismo , Megacariócitos/citologia , Megacariócitos/metabolismo , Camundongos , Proteínas Nucleares/metabolismo , Oligodesoxirribonucleotídeos/metabolismo , Fosfoproteínas/metabolismo , Transdução de Sinais , Análise de Célula Única , Telômero/química , Telômero/fisiologia , Encurtamento do Telômero/genética
6.
Neurology ; 96(9): e1319-e1333, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33277420

RESUMO

OBJECTIVE: Aiming to detect associations between neuroradiologic and EEG evaluations and long-term clinical outcome in order to detect possible prognostic factors, a detailed clinical and neuroimaging characterization of 67 cases of Aicardi syndrome (AIC), collected through a multicenter collaboration, was performed. METHODS: Only patients who satisfied Sutton diagnostic criteria were included. Clinical outcome was assessed using gross motor function, manual ability, and eating and drinking ability classification systems. Brain imaging studies and statistical analysis were reviewed. RESULTS: Patients presented early-onset epilepsy, which evolved into drug-resistant seizures. AIC has a variable clinical course, leading to permanent disability in most cases; nevertheless, some cases presented residual motor abilities. Chorioretinal lacunae were present in 86.56% of our patients. Statistical analysis revealed correlations between MRI, EEG at onset, and clinical outcome. On brain imaging, 100% of the patients displayed corpus callosum malformations, 98% cortical dysplasia and nodular heterotopias, and 96.36% intracranial cysts (with similar rates of 2b and 2d). As well as demonstrating that posterior fossa abnormalities (found in 63.63% of cases) should also be considered a common feature in AIC, our study highlighted the presence (in 76.36%) of basal ganglia dysmorphisms (never previously reported). CONCLUSION: The AIC neuroradiologic phenotype consists of a complex brain malformation whose presence should be considered central to the diagnosis. Basal ganglia dysmorphisms are frequently associated. Our work underlines the importance of MRI and EEG, both for correct diagnosis and as a factor for predicting long-term outcome. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that for patients with AIC, specific MRI abnormalities and EEG at onset are associated with clinical outcomes.


Assuntos
Síndrome de Aicardi/diagnóstico por imagem , Gânglios da Base/anormalidades , Adolescente , Adulto , Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Criança , Pré-Escolar , Ingestão de Líquidos , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/etiologia , Ingestão de Alimentos , Eletroencefalografia , Feminino , Humanos , Lactente , Imageamento por Ressonância Magnética , Destreza Motora , Retina/diagnóstico por imagem , Estudos Retrospectivos , Convulsões/diagnóstico por imagem , Convulsões/etiologia , Convulsões/fisiopatologia , Resultado do Tratamento , Adulto Jovem
8.
Front Cell Dev Biol ; 8: 166, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32258040

RESUMO

Homotypic and heterotypic interactions between cells are of crucial importance in multicellular organisms for the maintenance of physiological functions. Accordingly, changes in cell-to-cell communication contribute significantly to tumor development. Cancer cells engage the different components of the tumor microenvironment (TME) to support malignant proliferation, escape immune control, and favor metastatic spreading. The interaction between cancerous and non-cancerous cell types within tumors occurs in many ways, including physical contact and paracrine signaling. Furthermore, local and long-range transfer of biologically active molecules (e.g., DNA, RNA, and proteins) can be mediated by small extracellular vesicles (EVs) and this has been shown to influence many aspects of tumor progression. As it stands, there is a critical need for suitable experimental systems that enable modeling the cell-to-cell communications occurring in cancer. Given their intrinsic complexity, animal models represent the ideal system to study cell-to-cell interaction between different cell types; however, they might make difficult to assess individual contribution to a given phenotype. On the other hand, simplest experimental models (i.e., in vitro culture systems) might be of great use when weighing individual contributions to a given phenomenon, yet it is imperative that they share a considerable number of features with human cancer. Of the many culture systems available to the scientific community, patient-derived organoids already proved to faithfully recapitulate many of the traits of patients' disease, including genetic heterogeneity and response to therapy. The organoid technology offers several advantages over conventional monolayer cell cultures, including the preservation of the topology of cell-to-cell and cell-to-matrix interactions as observed in vivo. Several studies have shown that organoid cultures can be successfully used to study interaction between cancer cells and cellular components of the TME. Here, we discuss the potential of using organoids to model the interplay between cancer and non-cancer cells in order to unveil biological mechanisms involved in cancers initiation and progression, which might ultimately lead to the identification of novel intervention strategy for those diseases.

9.
Front Pediatr ; 7: 51, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30863741

RESUMO

The polyglandular autoimmune syndrome type I is a rare hereditary autosomal recessive disease. We describe a child with the classic triad of the disease and her sister with pure red cell aplasia and cerebellar hypoplasia. The latter received two haematopoietic stem cell transplantations, complicated by an acute disseminated encephalomyelitis.

10.
Ital J Pediatr ; 44(1): 110, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30231930

RESUMO

BACKGROUND: Overgrowth syndromes are known as a heterogeneous group of conditions characterized by a generalized or segmental, symmetric or asymmetric, overgrowth that may involve several tissues. These disorders, which present a wide range of phenotypic variability, are often caused by mosaic somatic mutations in the genes associated with the PI3K/AKT/mTOR cellular pathway, a signaling cascade that plays a key role in cellular growth. Overgrowth syndromes are frequently misdiagnosed. Given that they are also associated to an increased oncologic risk, it is important to distinguish the clinical characteristic of these disorders since the first months of life. CASE PRESENTATION: We report the case of a seven-year-old male child with macrocephaly and right lateralized overgrowth, reported from birth. The patient arrived to our attention after an initial diagnosis of isolated benign macrocephaly was formulated at the age of 12 months. Afterwards, the child presented a moderate intellectual disability and pain episodes at right lower limb. We repeated a brain Magnetic Resonance Imaging that revealed ventriculomegaly, cerebellar tonsillar ectopia, a markedly thick corpus callosum, and white matter abnormalities. The diagnosis of segmental overgrowth syndrome was formulated according to the clinical presentation and confirmed by the finding of the variant c.2740G > A in the gene PIK3CA presented in somatic mosaicism. CONCLUSIONS: Our patient is the first children with the c.2740G > A variant in PIK3CA gene reported in Italy. We underline the importance of the genotype-phenotype correlation in the diagnostic process of overgrowth syndromes and emphasize the strict correlation between the mutation c.2740G > A in the PIK3CA gene and the Megalencephaly-Capillary Malformation syndrome phenotype.


Assuntos
Anormalidades Múltiplas/diagnóstico , Classe I de Fosfatidilinositol 3-Quinases/genética , Hemimegalencefalia/genética , Megalencefalia/genética , Mutação , Anormalidades Múltiplas/genética , Criança , Erros de Diagnóstico , Eletroencefalografia/métodos , Seguimentos , Hemimegalencefalia/diagnóstico por imagem , Humanos , Itália , Imageamento por Ressonância Magnética/métodos , Masculino , Megalencefalia/diagnóstico , Mosaicismo , Doenças Raras , Medição de Risco , Tomografia Computadorizada por Raios X/métodos , Ultrassonografia Doppler
11.
Differentiation ; 100: 1-11, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29331736

RESUMO

Telomere biology disorders, which are characterized by telomerase activity haploinsufficiency and accelerated telomere shortening, most commonly manifest as degenerative diseases. Tissues with high rates of cell turnover, such as those in the hematopoietic system, are particularly vulnerable to defects in telomere maintenance genes that eventually culminate in bone marrow (BM) failure syndromes, in which the BM cannot produce sufficient new blood cells. Here, we review how telomere defects induce degenerative phenotypes across multiple organs, with particular focus on how they impact the hematopoietic stem and progenitor compartment and affect hematopoietic stem cell (HSC) self-renewal and differentiation. We also discuss how both the increased risk of myelodysplastic syndromes and other hematological malignancies that is associated with telomere disorders and the discovery of cancer-associated somatic mutations in the shelterin components challenge the conventional interpretation that telomere defects are cancer-protective rather than cancer-promoting.


Assuntos
Doenças da Medula Óssea/genética , Encurtamento do Telômero , Animais , Doenças da Medula Óssea/patologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Telômero/genética , Telômero/metabolismo , Telômero/patologia
13.
Cancer Cell ; 32(1): 88-100.e6, 2017 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-28669490

RESUMO

Amplification of 1q21 occurs in approximately 30% of de novo and 70% of relapsed multiple myeloma (MM) and is correlated with disease progression and drug resistance. Here, we provide evidence that the 1q21 amplification-driven overexpression of ILF2 in MM promotes tolerance of genomic instability and drives resistance to DNA-damaging agents. Mechanistically, elevated ILF2 expression exerts resistance to genotoxic agents by modulating YB-1 nuclear localization and interaction with the splicing factor U2AF65, which promotes mRNA processing and the stabilization of transcripts involved in homologous recombination in response to DNA damage. The intimate link between 1q21-amplified ILF2 and the regulation of RNA splicing of DNA repair genes may be exploited to optimize the use of DNA-damaging agents in patients with high-risk MM.


Assuntos
Mieloma Múltiplo/genética , Proteína do Fator Nuclear 45/fisiologia , Splicing de RNA/genética , Dano ao DNA , Reparo do DNA , Recombinação Homóloga , Humanos , Proteína do Fator Nuclear 45/genética , Proteína do Fator Nuclear 45/metabolismo , Fator de Processamento U2AF/metabolismo , Células Tumorais Cultivadas , Proteína 1 de Ligação a Y-Box/metabolismo
14.
Haematologica ; 101(3): e107-10, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26659917

Assuntos
Regulação Neoplásica da Expressão Gênica , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Fatores Imunológicos/farmacologia , Mieloma Múltiplo/terapia , Plasmócitos/efeitos dos fármacos , Talidomida/análogos & derivados , Animais , Caspase 3/genética , Caspase 3/imunologia , Inibidor de Quinase Dependente de Ciclina p27/genética , Inibidor de Quinase Dependente de Ciclina p27/imunologia , Modelos Animais de Doenças , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/antagonistas & inibidores , Subunidade alfa do Fator 1 Induzível por Hipóxia/imunologia , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/imunologia , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/imunologia , Lenalidomida , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/imunologia , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/imunologia , Mieloma Múltiplo/genética , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/patologia , Plasmócitos/imunologia , Plasmócitos/patologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Proteínas Quinases Associadas a Fase S/imunologia , Transdução de Sinais , Talidomida/farmacologia , Transativadores/genética , Transativadores/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA