Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 9(11): 1073, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30341285

RESUMO

A variety of environmental agents has been found to influence the development of autoimmune diseases; in particular, the studies investigating the potential association of systemic autoimmune rheumatic diseases with environmental micro and nano-particulate matter are very few and contradictory. In this study, the role of diesel exhaust particles (DEPs), one of the most important components of environment particulate matter, emitted from Euro 4 and Euro 5 engines in altering the Normal Human Bronchial Epithelial (NHBE) cell biological activity was evaluated. NHBE cells were exposed in vitro to Euro 4 and Euro 5 particle carbon core, sampled upstream of the typical emission after-treatment systems (diesel oxidation catalyst and diesel particulate filter), whose surfaces have been washed from well-assessed harmful species, as polycyclic aromatic hydrocarbons (PAHs) to: (1) investigate their specific capacity to affect cell viability (flow cytometry); (2) stimulate the production of the pro-inflammatory cytokine IL-18 (Enzyme-Linked ImmunoSorbent Assay -ELISA-); (3) verify their specific ability to induce autophagy and elicit protein citrullination and peptidyl arginine deiminase (PAD) activity (confocal laser scanning microscopy, immunoprecipitation, Sodium Dodecyl Sulphate-PolyAcrylamide Gel Electrophoresis -SDS-PAGE- and Western blot, ELISA). In this study we demonstrated, for the first time, that both Euro 4 and Euro 5 carbon particles, deprived of PAHs possibly adsorbed on the soot surface, were able to: (1) significantly affect cell viability, inducing autophagy, apoptosis and necrosis; (2) stimulate the release of the pro-inflammatory cytokine IL-18; (3) elicit protein citrullination and PAD activity in NHBE cells. In particular, Euro 5 DEPs seem to have a more marked effect with respect to Euro 4 DEPs.


Assuntos
Autofagia , Brônquios/citologia , Citrulinação , Células Epiteliais/metabolismo , Material Particulado/efeitos adversos , Emissões de Veículos , Poluentes Atmosféricos/efeitos adversos , Apoptose , Doenças Autoimunes/etiologia , Sobrevivência Celular , Células Cultivadas , Humanos , Interleucina-18/metabolismo , Necrose , Tamanho da Partícula , Hidrocarbonetos Policíclicos Aromáticos/efeitos adversos , Desiminases de Arginina em Proteínas/metabolismo
2.
Part Fibre Toxicol ; 11: 74, 2014 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-25498254

RESUMO

BACKGROUND: Diesel exhaust particles (DEP) are major constituents of ambient air pollution and their adverse health effect is an area of intensive investigations. With respect to the immune system, DEP have attracted significant research attention as a factor that could influence allergic diseases interfering with cytokine production and chemokine expression. With this exception, scant data are available on the impact of DEP on lymphocyte homeostasis. Here, the effects of nanoparticles from Euro 4 (E4) and Euro 5 (E5) light duty diesel engines on the phenotype and function of T lymphocytes from healthy donors were evaluated. METHODS: T lymphocytes were isolated from peripheral blood obtained from healthy volunteers and subsequently stimulated with different concentration (from 0.15 to 60 µg/ml) and at different time points (from 24 h to 9 days) of either E4 or E5 particles. Immunological parameters, including apoptosis, autophagy, proliferation levels, mitochondrial function, expression of activation markers and cytokine production were evaluated by cellular and molecular analyses. RESULTS: DEP exposure caused a pronounced autophagic-lysosomal blockade, thus interfering with a key mechanism involved in the maintaining of T cell homeostasis. Moreover, DEP decreased mitochondrial membrane potential but, unexpectedly, this effect did not result in changes of the apoptosis and/or necrosis levels, as well as of intracellular content of adenosine triphosphate (ATP). Finally, a down-regulation of the expression of the alpha chain of the interleukin (IL)-2 receptor (i.e., the CD25 molecule) as well as an abnormal Th1 cytokine expression profile (i.e., a decrease of IL-2 and interferon (IFN)-γ production) were observed after DEP exposure. No differences between the two compounds were detected in all studied parameters. CONCLUSIONS: Overall, our data identify functional and phenotypic T lymphocyte parameters as relevant targets for DEP cytotoxicity, whose impairment could be detrimental, at least in the long run, for human health, favouring the development or the progression of diseases such as autoimmunity and cancer.


Assuntos
Poluentes Atmosféricos/toxicidade , Regulação para Baixo/efeitos dos fármacos , Subunidade alfa de Receptor de Interleucina-2/antagonistas & inibidores , Ativação Linfocitária/efeitos dos fármacos , Fuligem/toxicidade , Linfócitos T/efeitos dos fármacos , Emissões de Veículos/toxicidade , Adulto , Poluentes Atmosféricos/química , Poluentes Atmosféricos/metabolismo , Autofagia/efeitos dos fármacos , Transporte Biológico , Biomarcadores/metabolismo , Células Cultivadas , Feminino , Humanos , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Cinética , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Pessoa de Meia-Idade , Tamanho da Partícula , Fuligem/química , Fuligem/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/ultraestrutura , Emissões de Veículos/análise , Adulto Jovem
3.
Nanomedicine ; 8(3): 299-307, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21723243

RESUMO

Aiming to explore the mechanisms modulating cell-carbon nanotube interactions, we investigated whether Ca(2+) ion balancing between intra- and extracellular environments could be affected by multiwalled carbon nanotubes (MWCNTs). We analyzed the effects induced by two different kinds of MWCNTs (as prepared and annealed at 2400°C) on the intracellular Ca(2+) ion levels in rat electrically sensitive cells and on the intercellular junction integrity of rat adenocarcinoma colon cells and platelet aggregation ability, which depend on the Ca(2+) concentration in the medium. MWCNTs, purified by annealing and more electroconductive as compared to nonannealed MWCNTs, affected Ca(2+) ion balancing between extra- and intracellular environments and induced changes on Ca(2+) ion-dependent cellular junctions and platelet aggregation, behaving as the calcium chelator ethylene glycol tetraacetic acid. This could be due to the sorption of cationic Ca(2+) ions on CNTs surface because of the excess of negatively charged electrons on the aromatic units formed on MWCNTs after annealing. From the ClinicAL Editor: The authors investigated whether Ca(2+) ion balance between intra- and extracellular space can be modulated by multiwalled carbon nanotubes (MWCNTs). Annealed nanotubes induced changes on Ca(2+) dependent cellular junctions and platelet aggregation, behaving similary to ethylene glycol tetraacetic acid, an established calcium chelator.


Assuntos
Cálcio/metabolismo , Condutividade Elétrica , Nanotecnologia/métodos , Nanotubos de Carbono/química , Animais , Linhagem Celular Tumoral , Forma Celular , Impedância Elétrica , Técnicas Eletroquímicas , Elétrons , Humanos , Junções Intercelulares/metabolismo , Espaço Intracelular/metabolismo , Íons , Agregação Plaquetária , Plasma Rico em Plaquetas/metabolismo , Ratos , Compostos de Estanho/química
4.
Environ Sci Technol ; 42(5): 1761-5, 2008 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-18441832

RESUMO

We evaluated, in vitro, the inflammatory and cytotoxic potential of soot particles from current low-emission (Euro IV) diesel engines toward human peripheral blood monocyte-derived macrophage cells. The result is surprising. At the same mass concentration, soot particles produced under low-emission conditions exhibit a much highertoxic and inflammatory potential than particles from an old diesel engine operating under black smoke conditions. This effect is assigned to the defective surface structure of Euro IV diesel soot, rendering it highly active. Our findings indicate that the reduction of soot emission in terms of mass does not automatically lead to a reduction of the toxic effects toward humans when the structure and functionality of the soot is changed, and thereby the biological accessibility and inflammatory potential of soot is increased.


Assuntos
Carcinógenos/toxicidade , Inflamação/induzido quimicamente , Emissões de Veículos/análise , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA