Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 9: 2363, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30429845

RESUMO

Psoriasis (PsO) is an autoimmune disease characterized by keratinocyte proliferation, chronic inflammation and mast cell activation. Up to 42% of patients with PsO may present psoriatic arthritis (PsA). PsO and PsA share common pathophysiological mechanisms: keratinocytes and fibroblast-like synoviocytes are resistant to apoptosis: this is one of the mechanism facilitating their hyperplasic growth, and at joint level, the destruction of articular cartilage, and bone erosion and/or proliferation. Several clinical studies regarding diseases characterized by impairment of cell death, either due to apoptosis or necrosis, reported cytochrome c release from the mitochondria into the extracellular space and finally into the circulation. The presence of elevated cytochrome c levels in serum has been demonstrated in diseases as inflammatory arthritis, myocardial infarction and stroke, and liver diseases. Cytochrome c is a signaling molecule essential for apoptotic cell death released from mitochondria to the cytosol allowing the interaction with protease, as the apoptosis protease activation factor, which lead to the activation of factor-1 and procaspase 9. It has been demonstrated that this efflux from the mitochondria is crucial to start the intracellular signaling responsible for apoptosis, then to the activation of the inflammatory process. Another inflammatory marker, the tryptase, a trypsin-like serine protease produced by mast cells, is released during inflammation, leading to the activation of several immune cells through proteinase-activated receptor-2. In this review, we aimed at discussing the role played by cytochrome c and tryptase in PsO and PsA pathogenesis. To this purpose, we searched pathogenetic mechanisms in PUBMED database and review on oxidative stress, cytochrome c and tryptase and their potential role during inflammation in PsO and PsA. To this regard, the cytochrome c release into the extracellular space and tryptase may have a role in skin and joint inflammation.


Assuntos
Artrite Psoriásica/etiologia , Artrite Psoriásica/metabolismo , Citocromos c/metabolismo , Psoríase/etiologia , Psoríase/metabolismo , Triptases/metabolismo , Animais , Apoptose , Artrite Psoriásica/patologia , Autoimunidade , Citocromos c/química , Humanos , Estresse Oxidativo , Psoríase/patologia , Triptases/química
2.
J Enzyme Inhib Med Chem ; 28(3): 463-7, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22299575

RESUMO

Acetylpolyamine and spermine oxidases are involved in the catabolism of polyamines. The discovery of selective inhibitors of these enzymes represents an important tool for the development of novel anti-neoplastic drugs. Here, a comparative study on acetylpolyamine and spermine oxidases inhibition by the polyamine analogue chlorhexidine is reported. Chlorhexidine is an antiseptic diamide, commonly used as a bactericidal and bacteriostatic agent. Docking simulations indicate that chlorhexidine binding to these enzymes is compatible with the stereochemical properties of both acetylpolyamine oxidase and spermine oxidase active sites. In fact, chlorhexidine is predicted to establish several polar and hydrophobic interactions with the active site residues of both enzymes, with binding energy values ranging from -7.6 to -10.6 kcal/mol. In agreement with this hypothesis, inhibition studies indicate that chlorhexidine behaves as a strong competitive inhibitor of both enzymes, values of Ki being 0.10 µM and 0.55 µM for acetylpolyamine oxidase and spermine oxidase, respectively.


Assuntos
Clorexidina/farmacologia , Inibidores Enzimáticos/farmacologia , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/antagonistas & inibidores , Animais , Domínio Catalítico , Camundongos , Modelos Moleculares , Simulação de Acoplamento Molecular/métodos , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/química , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/genética , Oxirredutases atuantes sobre Doadores de Grupo CH-NH/metabolismo , Conformação Proteica , Putrescina/análogos & derivados , Putrescina/farmacologia , Poliamina Oxidase
3.
Biochemistry ; 48(15): 3279-87, 2009 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-19231839

RESUMO

The binding of lipids (free fatty acids as well as acidic phospholipids) to cytochrome c (cyt c) induces conformational changes and partial unfolding of the protein, strongly influencing cyt c oxidase/peroxidase activity. ATP is unique among the nucleotides in being able to turn non-native states of cyt c back to the native conformation. The peroxidase activity acquired by lipid-bound cyt c turns out to be very critical in the early stages of apoptosis. Nucleotide specificity is observed for apoptosome formation and caspase activation, the cleavage occurring only in the presence of dATP or ATP. In this study, we demonstrate the connection between peroxidase activity and oleic acid-induced conformational transitions of cyt c and show how ATP is capable of modulating such interplay. By NMR measurement, we have demonstrated that ATP interacts with a site (S1) formed by K88, R91, and E62 and such interaction was weakened by mutation of E62, suggesting the selective role in the interaction played by the base moiety. Interestingly, the interactions of ATP and GTP with cyt c are significantly different at low nucleotide concentrations, with GTP being less effective in perturbing the S1 site and in eliciting apoptotic activity. To gain insights into the structural features of cyt c required for its pro-apoptotic activity and to demonstrate a regulatory role for ATP (compared to the effect of GTP), we have performed experiments on cell lysates by using cyt c proteins mutated on amino acid residues that, as suggested by NMR measurements, belong to S1. Thus, we provide evidence that ATP acts as an allosteric effector, regulating structural transitions among different conformations and different oxidation states of cyt c, which are endowed with apoptotic activity or not. On this basis, we suggest a previously unrecognized role for ATP binding to cyt c at low millimolar concentrations in the cytosol, beyond the known regulatory role during the oxidative phosphorylation in mitochondria.


Assuntos
Trifosfato de Adenosina/fisiologia , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/metabolismo , Citocromos c/química , Citocromos c/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Regulação Alostérica/genética , Animais , Proteínas Reguladoras de Apoptose/genética , Sítios de Ligação/genética , Citocromos c/genética , Cavalos , Humanos , Mutação , Ácido Oleico/metabolismo , Peroxidase/metabolismo , Ligação Proteica/genética , Conformação Proteica , Relação Estrutura-Atividade , Células U937
4.
Biochemistry ; 47(26): 6928-35, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18540683

RESUMO

The finding that cytochrome c (cyt c) plays a role in programmed cell death after its release from the mitochondrion has recently renewed interest in this protein. The structural changes in cytochrome c observed at early stages of the apoptotic process have been related to changes occurring in the protein when it forms a complex with phospholipid vesicles. Among the lipids constituting the membrane, cardiolipin is the one thought to bind to cyt c. In this paper, we have investigated the influence exerted by ionic strength on cytochrome c-cardiolipin interaction and found that formation of the cytochrome c-cardiolipin complex occurs via two distinct transitions, implying a high-affinity site and a low-affinity site. Ionic strength significantly influences complex stability; sodium chloride dissociates the complex through two distinct transitions, the second of which occurs at a very high anion concentration. ATP also dissociates the complex, but under the conditions that were investigated, its action is limited to the high-affinity site. The dissociation process is characterized by a very slow kinetic rate constant ( k obs = 4.2 x 10 (-3) s (-1)) and requires several minutes to be completed. We ascribe it to the high activation barrier met by the protein when restoring the native Fe(III)-M80 axial bond. The peroxidase activity shown by cardiolipin-bound cytochrome c is indicative of a less packed protein tertiary conformation in the complex. In line with earlier reports, these data highlight the manifold functions of cytochrome c besides the well-known role it plays in oxidative phosphorylation, shedding more light on the properties of the cytochrome c-cardiolipin complex, involved in the progression of early stages of apoptosis.


Assuntos
Cardiolipinas/química , Cardiolipinas/metabolismo , Citocromos c/química , Citocromos c/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Bovinos , Dicroísmo Circular , Cavalos , Cinética , Concentração Osmolar , Peroxidase/metabolismo , Ligação Proteica , Titulometria
5.
Protein Sci ; 14(4): 1049-58, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15741329

RESUMO

An increasing body of evidence ascribes to misfolded forms of cytochrome c (cyt c) a role in pathophysiological events such as apoptosis and disease. Here, we examine the conformational changes induced by lipid binding to horse heart cyt c at pH 7 and study the ability of ATP (and other nucleotides) to refold several forms of unfolded cyt c such as oleic acid-bound cyt c, nicked cyt c, and acid denatured cyt c. The CD and fluorescence spectra demonstrate that cyt c unfolded by oleic acid has an intact secondary structure, and a disrupted tertiary structure and heme environment. Furthermore, evidence from the Soret CD, electronic absorption, and resonance Raman spectra indicates the presence of an equilibrium of at least two low-spin species having distinct heme-iron(III) coordination. As a whole, the data indicate that binding of cyt c to oleic acid leads to a partially unfolded conformation of the protein, resembling that typical of the molten globule state. Interestingly, the native conformation is almost fully recovered in the presence of ATP or dATP, while other nucleotides, such as GTP, are ineffective. Molecular modeling of ATP binding to cyt c and mutagenesis experiments show the interactions of phosphate groups with Lys88 and Arg91, with adenosine ring interaction with Glu62 explaining the unfavorable binding of GTP. The finding that ATP and dATP are unique among the nucleotides in being able to turn non-native states of cyt c back to native conformation is discussed in the light of cyt c involvement in cell apoptosis.


Assuntos
Trifosfato de Adenosina/farmacologia , Citocromos c/química , Animais , Sítios de Ligação , Citocromos c/genética , Citocromos c/metabolismo , Concentração de Íons de Hidrogênio , Mutagênese , Nucleotídeos/farmacologia , Ácido Oleico/metabolismo , Conformação Proteica/efeitos dos fármacos , Dobramento de Proteína , Análise Espectral Raman
6.
J Inorg Biochem ; 98(6): 1067-77, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15149817

RESUMO

We have characterized the ferric and ferrous forms of the heme-containing (1-56 residues) N-fragment of horse heart cytochrome c (cyt c) at different pH values and low ionic strength by UV-visible absorption and resonance Raman (RR) scattering. The results are compared with native cyt c in the same experimental conditions as this may provide a deeper insight into the cyt c unfolding-folding process. Folding of cyt c leads to a state having the heme iron coordinated to a histidine (His18) and a methionine (Met80) as axial ligands. At neutral pH the N-fragment (which lacks Met80) shows absorption and RR spectra that are consistent with the presence of a bis-His low spin heme, like several non-native forms of the parental protein. In particular, the optical spectra are identical to those of cyt c in the presence of a high concentration of denaturants; this renders the N-fragment a suitable model to study the heme pocket microenvironment of the misfolded (His-His) intermediate formed during folding of cyt c. Acid pH affects the ligation state in both cyt c and the N-fragment. Data obtained as a function of pH allow a correlation between the structural properties in the heme pocket of the N-fragment and those of non-native forms of cyt c. The results underline that the (57-104 residues) segment under native-like conditions imparts structural stability to the protein by impeding solvent access into the heme pocket.


Assuntos
Citocromos c/química , Modelos Moleculares , Miocárdio/enzimologia , Peptídeos/química , Dobramento de Proteína , Animais , Heme/química , Histidina/química , Cavalos , Concentração de Íons de Hidrogênio , Desnaturação Proteica , Estrutura Terciária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA