Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Biomembr ; 1865(7): 184182, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37276926

RESUMO

The ionophoric antibiotic salinomycin is in the phase of preclinical tests against several types of malignant tumors including breast cancer. Notwithstanding, the data on its ion selectivity, although being critical for its therapeutic activity, are rather scarce. In the present work, we studied the ability of salinomycin to exert cation/H+-exchange across artificial bilayer lipid membranes (BLM) by measuring electrical potential on planar BLM in the presence of a protonophore and fluorescence responses of the pH-sensitive dye pyranine entrapped in liposomes. The following order of ion selectivity was obtained by these two methods: K+ > Na+ > Rb+ > Cs+ > Li+. Measurements of the monovalent cation-induced quenching of fluorescence of thallium ions in methanol showed that salinomycin effectively binds potassium and calcium but poorly binds sodium and lithium ions. At high concentrations, salinomycin transports Ca2+ through membranes of liposomes and mitochondria, as measured by using the calcium-sensitive dye Fluo-5 N. The data obtained can be used in the mechanistic studies of the anti-tumor activity of salinomycin and its selective cytotoxicity towards cancer stem cells.


Assuntos
Antibacterianos , Lipossomos , Antibacterianos/farmacologia , Cálcio , Bicamadas Lipídicas , Lítio/metabolismo , Cátions , Sódio/metabolismo
2.
Arch Biochem Biophys ; 728: 109366, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35878680

RESUMO

An impressive body of evidence has been accumulated now on sound beneficial effects of mitochondrial uncouplers in struggling with the most dangerous pathologies such as cancer, infective diseases, neurodegeneration and obesity. To increase their efficacy while gaining further insight in the mechanism of the uncoupling action has been remaining a challenge. Encouraged by our previous promising results on lipophilic derivatives of 7-hydroxycoumarin-4-acetic acid (UB-4 esters), here, we use a 7-hydroxycoumarin-3-carboxylic acid scaffold to synthesize a new series of 7-hydroxycoumarin (umbelliferone, UB)-derived uncouplers of oxidative phosphorylation - alkyl esters of umbelliferone-3-carboxylic acid (UB-3 esters) with varying carbon chain length. Compared to the UB-4 derivatives, UB-3 esters proved to be stronger uncouplers: the most effective of them caused a pronounced increase in the respiration rate of isolated rat heart mitochondria (RHM) at submicromolar concentrations. Both of these series of UB derivatives exhibited a striking difference between their uncoupling patterns in mitochondria isolated from liver and heart or kidney, namely: a pronounced but transient decrease in membrane potential, followed by its recovery, was observed after the addition of these compounds to isolated rat liver mitochondria (RLM), while the depolarization of RHM and rat kidney mitochondria (RKM) was rather stable under the same conditions. Interestingly, partial reversal of this depolarization in RHM and RKM was caused by carboxyatractyloside, an inhibitor of ATP/ADP translocase, thereby pointing to the involvement of this mitochondrial membrane protein in the uncoupling activity of both UB-3 and UB-4 esters. The fast membrane potential recovery in RLM uncoupled by the addition of the UB esters was apparently associated with hydrolysis of these compounds, catalyzed by mitochondrial aldehyde dehydrogenase (ALDH2), being in high abundance in liver compared to other tissues. Protonophoric properties of the UB derivatives in isolated mitochondria were confirmed by measurements of RHM swelling in the presence of potassium acetate. In model bilayer lipid membranes (liposomes), proton-carrying activity of UB-3 esters was demonstrated by measuring fluorescence response of the pH-dependent dye pyranine. Electrophysiological experiments on identified neurons from Lymnaea stagnalis demonstrated low neurotoxicity of UB-3 esters. Resazurin-based cell viability assay showed low toxicity of UB-3 esters to HEK293 cells and primary human fibroblasts. Thus, the present results enable us to consider UB-3 esters as effective tissue-specific protonophoric mitochondrial uncouplers.


Assuntos
Translocases Mitocondriais de ADP e ATP , Fosforilação Oxidativa , Trifosfato de Adenosina , Aldeído-Desidrogenase Mitocondrial , Animais , Ésteres , Células HEK293 , Humanos , Mitocôndrias Cardíacas , Mitocôndrias Hepáticas , Ratos , Umbeliferonas , Desacopladores
3.
Biochim Biophys Acta Biomembr ; 1862(9): 183303, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32251647

RESUMO

Usnic acid (UA), a secondary lichen metabolite, has long been popular as one of natural fat-burning dietary supplements. Similar to 2,4-dinitrophenol, the weight-loss effect of UA is assumed to be associated with its protonophoric uncoupling activity. Recently, we have shown that the ability of UA to shuttle protons across both mitochondrial and artificial membranes is strongly modulated by the presence of calcium ions in the medium. Here, by using fluorescent probes, we studied the calcium-transporting capacity of usnic acid in a variety of membrane systems comprising liposomes, isolated rat liver mitochondria, erythrocytes and rat basophilic leukemia cell culture (RBL-2H3). At concentrations of tens of micromoles, UA appeared to be able to carry calcium ions across membranes in all the systems studied. Similar to the calcium ionophore A23187, UA caused degranulation of RBL-2H3 cells. Therefore, UA, being a protonophoric uncoupler of oxidative phosphorylation, at higher concentrations manifests itself as a calcium ionophore, which could be relevant to its overdose toxicity in humans and also its phytotoxicity.


Assuntos
Benzofuranos/química , Ionóforos de Cálcio/química , Transporte de Íons/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , 2,4-Dinitrofenol/química , Animais , Benzofuranos/farmacologia , Calcimicina/farmacologia , Ionóforos de Cálcio/farmacologia , Linhagem Celular Tumoral , Eritrócitos/efeitos dos fármacos , Humanos , Líquens/química , Mitocôndrias/efeitos dos fármacos , Prótons , Ratos
4.
Biomolecules ; 10(2)2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31973069

RESUMO

Neuronal calcium sensors are a family of N-terminally myristoylated membrane-binding proteins possessing a different intracellular localization and thereby targeting unique signaling partner(s). Apart from the myristoyl group, the membrane attachment of these proteins may be modulated by their N-terminal positively charged residues responsible for specific recognition of the membrane components. Here, we examined the interaction of neuronal calcium sensor-1 (NCS-1) with natural membranes of different lipid composition as well as individual phospholipids in form of multilamellar liposomes or immobilized monolayers and characterized the role of myristoyl group and N-terminal lysine residues in membrane binding and phospholipid preference of the protein. NCS-1 binds to photoreceptor and hippocampal membranes in a Ca2+-independent manner and the binding is attenuated in the absence of myristoyl group. Meanwhile, the interaction with photoreceptor membranes is less dependent on myristoylation and more sensitive to replacement of K3, K7, and/or K9 of NCS-1 by glutamic acid, reflecting affinity of the protein to negatively charged phospholipids. Consistently, among the major phospholipids, NCS-1 preferentially interacts with phosphatidylserine and phosphatidylinositol with micromolar affinity and the interaction with the former is inhibited upon mutating of N-terminal lysines of the protein. Remarkably, NCS-1 demonstrates pronounced specific binding to phosphoinositides with high preference for phosphatidylinositol-3-phosphate. The binding does not depend on myristoylation and, unexpectedly, is not sensitive to the charge inversion mutations. Instead, phosphatidylinositol-3-phosphate can be recognized by a specific site located in the N-terminal region of the protein. These data provide important novel insights into the general mechanism of membrane binding of NCS-1 and its targeting to specific phospholipids ensuring involvement of the protein in phosphoinositide-regulated signaling pathways.


Assuntos
Proteínas Sensoras de Cálcio Neuronal/metabolismo , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Fosfatos de Fosfatidilinositol/química , Sítios de Ligação , Cálcio/química , Hipocampo/metabolismo , Humanos , Ligação de Hidrogênio , Ligantes , Luz , Lipossomos/química , Lisina/química , Magnésio/química , Simulação de Acoplamento Molecular , Mutação , Ácido Mirístico/química , Ligação Proteica , Domínios Proteicos , Transdução de Sinais , Espectrometria de Fluorescência , Eletricidade Estática , Temperatura
5.
Antioxidants (Basel) ; 8(6)2019 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-31234606

RESUMO

It is generally considered that reactive oxygen species (ROS) are involved in the development of numerous pathologies. The level of ROS can be altered via the uncoupling of oxidative phosphorylation by using protonophores causing mitochondrial membrane depolarization. Here, we report that the uncoupling activity of potent protonophores, such as carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP), carbonyl cyanide 3-chlorophenylhydrazone (CCCP), and fluazinam, can be abrogated by the addition of thiol-containing antioxidants to isolated mitochondria. In particular, N-acetylcysteine, glutathione, cysteine, and dithiothreitol removed both a decrease in the mitochondrial membrane potential and an increase in the respiration rate that is caused by FCCP. The thiols also reduced the electrical current that is induced by FCCP and CCCP across planar bilayer lipid membranes. Thus, when speculating on the mechanistic roles of ROS level modulation by mitochondrial uncoupling based on the antioxidant reversing certain FCCP and CCCP effects on cellular processes, one should take into account the ability of these protonophoric uncouplers to directly interact with the thiol-containing antioxidants.

6.
J Membr Biol ; 251(5-6): 633-640, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29995247

RESUMO

In contrast to the parent pentadecapeptide gramicidin A (gA), some of its cationic analogs have been shown previously to form large-diameter pores in lipid membranes. These pores are permeable to fluorescent dyes, which allows one to monitor pore formation by using the fluorescence de-quenching assay. According to the previously proposed model, the gA analog with lysine substituted for alanine at position 3, [Lys3]gA, forms pores by a homopentameric assembly of gramicidin double-stranded ß-helical dimers. Here, we studied the newly synthesized analogs of [Lys3]gA with single, double and triple substitutions of isoleucines for tryptophans at positions 9, 11, 13, and 15. Replacement of any of the tryptophans of [Lys3]gA with isoleucine resulted in suppression of the pore-forming activity of the peptide, the effect being significantly dependent on the position of tryptophans. In particular, the peptide with a single substitution of tryptophan 13 showed much lower activity than the analogs with single substitutions at positions 9, 11, or 15. Of the peptides with double substitutions, the strongest suppression of the leakage was observed with tryptophans 13 and 15. In the case of triple substitutions, only the peptide retaining tryptophan 11 exhibited noticeable activity. It is concluded that tryptophans 11 and 13 contribute most to pore stabilization in the membrane, whereas tryptophan 9 is not so important for pore formation. Cation-π interactions between the lysine and tryptophan residues of the peptide are suggested to be crucial for the formation of the [Lys3]gA pore.


Assuntos
Gramicidina/química , Lipossomos/química , Lisina/química , Lipídeos de Membrana/química , Peptídeos/química , Triptofano/química
7.
Biochim Biophys Acta Biomembr ; 1860(2): 329-334, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29038022

RESUMO

The present study demonstrated for the first time the interaction between adenosine 3',5'-cyclic monophosphate (cAMP), one of the most important signaling compounds in living organisms, and the mitochondria-targeted antioxidant plastoquinonyl-decyltriphenylphosphonium (SkQ1). The data obtained on model liquid membranes and human platelets revealed the ability of SkQ1 to selectively transport cAMP, but not guanosine 3',5'-cyclic monophosphate (cGMP), across both artificial and natural membranes. In particular, SkQ1 elicited translocation of cAMP from the source to the receiving phase of a Pressman-type cell, while showing low activity with cGMP. Importantly, only conjugate with plastoquinone, but not dodecyl-triphenylphosphonium, was effective in carrying cAMP. In human platelets, SkQ1 also appeared to serve as a carrier of cAMP, but not cGMP, from outside to inside the cell, as measured by phosphorylation of the vasodilator stimulated phosphoprotein. The SkQ1-induced transfer of cAMP across the plasma membrane found here can be tentatively suggested to interfere with cAMP signaling pathways in living cells.


Assuntos
Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Membranas Artificiais , Oniocompostos/metabolismo , Compostos Organofosforados/metabolismo , Plastoquinona/metabolismo , Animais , Transporte Biológico , Plaquetas/metabolismo , GMP Cíclico/metabolismo , Membrana Eritrocítica/metabolismo , Humanos , Lipossomos/metabolismo , Oniocompostos/química , Compostos Organofosforados/química , Fosforilação , Plastoquinona/química , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA