Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(40): 14817-14826, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37756184

RESUMO

Animal studies have pointed at the liver as a hotspot for per- and polyfluoroalkyl substances (PFAS) accumulation and toxicity; however, these findings have not been replicated in human populations. We measured concentrations of seven PFAS in matched liver and plasma samples collected at the time of bariatric surgery from 64 adolescents in the Teen-Longitudinal Assessment of Bariatric Surgery (Teen-LABS) study. Liver:plasma concentration ratios were perfectly explained (r2 > 0.99) in a multilinear regression (MLR) model based on toxicokinetic (TK) descriptors consisting of binding to tissue constituents and membrane permeabilities. Of the seven matched plasma and liver PFAS concentrations compared in this study, the liver:plasma concentration ratio of perfluoroheptanoic acid (PFHpA) was considerably higher than the liver:plasma concentration ratio of other PFAS congeners. Comparing the MLR model with an equilibrium mass balance model (MBM) suggested that complex kinetic transport processes are driving the unexpectedly high liver:plasma concentration ratio of PFHpA. Intratissue MBM modeling pointed to membrane lipids as the tissue constituents that drive the liver accumulation of long-chain, hydrophobic PFAS, whereas albumin binding of hydrophobic PFAS dominated PFAS distribution in plasma. The liver:plasma concentration data set, empirical MLR model, and mechanistic MBM modeling allow the prediction of liver from plasma concentrations measured in human cohort studies. Our study demonstrates that combining biomonitoring data with mechanistic modeling can identify underlying mechanisms of internal distribution and specific target organ toxicity of PFAS in humans.


Assuntos
Ácidos Alcanossulfônicos , Cirurgia Bariátrica , Poluentes Ambientais , Fluorocarbonos , Animais , Humanos , Adolescente , Estudos de Coortes , Fígado , Fluorocarbonos/análise
2.
Chem Res Toxicol ; 33(7): 1770-1779, 2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32227843

RESUMO

High-throughput in vitro reporter gene assays are increasingly applied to assess the potency of chemicals to alter specific cellular signaling pathways. Genetically modified reporter gene cell lines provide stable readouts of the activation of cellular receptors or transcription factors of interest, but such reporter gene assays have been criticized for not capturing cellular metabolism. We characterized the metabolic activity of the widely applied AREc32 (human breast cancer MCF-7), ARE-bla (human liver cancer HepG2), and GR-bla (human embryonic kidney HEK293) reporter gene cells in the absence and in the presence of benzo[a]pyrene (BaP), an AhR ligand known to upregulate cytochrome P450 in vitro and in vivo. We combined fluorescence microscopy with chemical analysis, real-time PCR, and ethoxyresorufin-O-deethylase activity measurements to track temporal changes in BaP and its metabolites in the cells and surrounding medium over time in relation to the expression and activity of metabolic enzymes. Decreasing BaP concentrations and formation of metabolites agreed with the high basal CYP1 activity of ARE-bla and the strong CYP1A1 mRNA induction in AREc32, whereas BaP concentrations were constant in GR-bla, in which neither metabolites nor CYP1 induction was detected. The study emphasizes that differences in sensitivity between reporter gene assays may be caused not only by different reporter constructs but also by a varying biotransformation rate of the evaluated parent chemical. The basal metabolic capacity of reporter gene cells in the absence of chemicals is not a clear indication because we demonstrated that the metabolic activity can be upregulated by AhR ligands during the assay. The combination of methods presented here is suitable to characterize the metabolic activity of cells in vitro and can improve the interpretation of in vitro reporter gene effect data and extrapolation to in vivo human exposure.


Assuntos
Benzopirenos/farmacologia , Bioensaio , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Modelos Biológicos , Genes Reporter , Células HEK293 , Células Hep G2 , Humanos , Células MCF-7 , RNA Mensageiro/metabolismo
3.
Chem Res Toxicol ; 31(8): 646-657, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-29939727

RESUMO

Cellular uptake kinetics are key for understanding time-dependent chemical exposure in in vitro cell assays. Slow cellular uptake kinetics in relation to the total exposure time can considerably reduce the biologically effective dose. In this study, fluorescence microscopy combined with automated image analysis was applied for time-resolved quantification of cellular uptake of 10 neutral, anionic, cationic, and zwitterionic fluorophores in two reporter gene assays. The chemical fluorescence in the medium remained relatively constant during the 24-h assay duration, emphasizing that the proteins and lipids in the fetal bovine serum (FBS) supplemented to the assay medium represent a large reservoir of reversibly bound chemicals with the potential to compensate for chemical depletion by cell uptake, growth, and sorption to well materials. Hence FBS plays a role in stabilizing the cellular dose in a similar way as polymer-based passive dosing, here we term this process as serum-mediated passive dosing (SMPD). Neutral chemicals accumulated in the cells up to 12 times faster than charged chemicals. Increasing medium FBS concentrations accelerated uptake due to FBS-facilitated transport but led to lower cellular concentrations as a result of increased sorption to medium proteins and lipids. In vitro cell exposure results from the interaction of several extra- and intracellular processes, leading to variable and time-dependent exposure between different chemicals and assay setups. The medium FBS plays a crucial role for the thermodynamic equilibria as well as for the cellular uptake kinetics, hence influencing exposure. However, quantification of cellular exposure by an area under the curve (AUC) analysis illustrated that, for the evaluated bioassay setup, current in vitro exposure models that assume instantaneous equilibrium between medium and cells still reflect a realistic exposure because the AUC was typically reduced less than 20% compared to the cellular dose that would result from instantaneous equilibrium.


Assuntos
Substâncias Perigosas/farmacocinética , Microscopia de Fluorescência/métodos , Animais , Área Sob a Curva , Linhagem Celular , Linhagem Celular Tumoral , Meios de Cultura , Genes Reporter , Humanos , Técnicas In Vitro , Termodinâmica
4.
Chem Res Toxicol ; 30(5): 1197-1208, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28316234

RESUMO

High-throughput in vitro bioassays are becoming increasingly important in the risk characterization of anthropogenic chemicals. Large databases gather nominal effect concentrations (Cnom) for diverse modes of action. However, the biologically effective concentration can substantially deviate due to differences in chemical partitioning. In this study, we modeled freely dissolved (Cfree), cellular (Ccell), and membrane concentrations (Cmem) in the Tox21 GeneBLAzer bioassays for a set of neutral and ionogenic organic chemicals covering a large physicochemical space. Cells and medium constituents were experimentally characterized for their lipid and protein content, and partition constants were either collected from the literature or predicted by mechanistic models. The chemicals exhibited multifaceted partitioning to proteins and lipids with distribution ratios spanning over 8 orders of magnitude. Modeled Cfree deviated over 5 orders of magnitude from Cnom and can be compared to in vivo effect data, environmental concentrations, and the unbound fraction in plasma, which is needed for the in vitro to in vivo extrapolation. Ccell was relatively constant for chemicals with membrane lipid-water distribution ratios of 1000 or higher and proportional to Cnom. Representing a sum parameter for exposure that integrates the entire dose from intracellular partitioning, Ccell is particularly suitable for the effect characterization of chemicals with multiple target sites and the calculation of their relative effect potencies. Effective membrane concentrations indicated that the specific effects of very hydrophobic chemicals in multiple bioassays are occurring at concentrations close to baseline toxicity. The equilibrium partitioning model including all relevant system parameters and a generic bioassay setup is attached as an excel workbook to this paper and can readily be applied to diverse in vitro bioassays.


Assuntos
Bioensaio , Exposição Ambiental , Modelos Teóricos , Testes de Toxicidade , Genes Reporter , Células HEK293 , Células Hep G2 , Ensaios de Triagem em Larga Escala , Humanos , Técnicas In Vitro , Relação Quantitativa Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA