Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Fac Rev ; 12: 14, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346090

RESUMO

This review examines the role of circulating cell-free DNA (cfDNA) as potential drivers of inflammation and their potential application as mechanistic biomarkers in Inflammatory Bowel Diseases (IBD). These DNA fragments contain significant information about their origins, the underlying host pathology leading to their release, and possess properties that can fuel the inflammatory process. Recent advances in sequencing and analytical approaches have made the translation of cfDNA into clinical practice a promising prospect. We focus on the functional relevance of cfDNA in the inflammatory process and discuss its potential for future assessments of IBD activity and identification of therapeutic options.

2.
Cell Death Differ ; 29(11): 2218-2232, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35505004

RESUMO

The bacterium Helicobacter pylori induces gastric inflammation and predisposes to cancer. H. pylori-infected epithelial cells secrete cytokines and chemokines and undergo DNA-damage. We show that the host cell's mitochondrial apoptosis system contributes to cytokine secretion and DNA-damage in the absence of cell death. H. pylori induced secretion of cytokines/chemokines from epithelial cells, dependent on the mitochondrial apoptosis machinery. A signalling step was identified in the release of mitochondrial Smac/DIABLO, which was required for alternative NF-κB-activation and contributed to chemokine secretion. The bacterial cag-pathogenicity island and bacterial muropeptide triggered mitochondrial host cell signals through the pattern recognition receptor NOD1. H. pylori-induced DNA-damage depended on mitochondrial apoptosis signals and the caspase-activated DNAse. In biopsies from H. pylori-positive patients, we observed a correlation of Smac-levels and inflammation. Non-apoptotic cells in these samples showed evidence of caspase-3-activation, correlating with phosphorylation of the DNA-damage response kinase ATM. Thus, H. pylori activates the mitochondrial apoptosis pathway to a sub-lethal level. During infection, Smac has a cytosolic, pro-inflammatory role in the absence of apoptosis. Further, DNA-damage through sub-lethal mitochondrial signals is likely to contribute to mutagenesis and cancer development.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Humanos , NF-kappa B/metabolismo , Infecções por Helicobacter/metabolismo , Infecções por Helicobacter/patologia , Mitocôndrias/metabolismo , Células Epiteliais/metabolismo , Quimiocinas/metabolismo , DNA/metabolismo , Inflamação/metabolismo , Mucosa Gástrica/metabolismo , Mucosa Gástrica/microbiologia , Mucosa Gástrica/patologia
3.
Cancers (Basel) ; 13(16)2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34439267

RESUMO

Alginate hydrogels have been used as a biomaterial for 3D culturing for several years. Here, gene expression patterns in melanoma cells cultivated in 3D alginate are compared to 2D cultures. It is well-known that 2D cell culture is not resembling the complex in vivo situation well. However, the use of very intricate 3D models does not allow performing high-throughput screening and analysis is highly complex. 3D cell culture strategies in hydrogels will better mimic the in vivo situation while they maintain feasibility for large-scale analysis. As alginate is an easy-to-use material and due to its favorable properties, it is commonly applied as a bioink component in the growing field of cell encapsulation and biofabrication. Yet, only a little information about the transcriptome in 3D cultures in hydrogels like alginate is available. In this study, changes in the transcriptome based on RNA-Seq data by cultivating melanoma cells in 3D alginate are analyzed and reveal marked changes compared to cells cultured on usual 2D tissue culture plastic. Deregulated genes represent valuable cues to signaling pathways and molecules affected by the culture method. Using this as a model system for tumor cell plasticity and heterogeneity, EGR1 is determined to play an important role in melanoma progression.

4.
Int J Mol Sci ; 21(11)2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32481600

RESUMO

Hepatocytes are key players in the innate immune response to liver pathogens but are challenging to study because of inaccessibility and a short half-life. Recent advances in in vitro differentiation of hepatocyte-like cells (HLCs) facilitated studies of hepatocyte-pathogen interactions. Here, we aimed to define the anti-viral innate immune potential of human HLCs with a focus on toll-like receptor (TLR)-expression and the presence of a metabolic switch. We analysed cytoplasmic pattern recognition receptor (PRR)- and endosomal TLR-expression and activity and adaptation of HLCs to an inflammatory environment. We found that transcript levels of retinoic acid inducible gene I (RIG-I), melanoma differentiation antigen 5 (MDA5), and TLR3 became downregulated during differentiation, indicating the acquisition of a more tolerogenic phenotype, as expected in healthy hepatocytes. HLCs responded to activation of RIG-I by producing interferons (IFNs) and IFN-stimulated genes. Despite low-level expression of TLR3, receptor expression was upregulated in an inflammatory environment. TLR3 signalling induced expression of proinflammatory cytokines at the gene level, indicating that several PRRs need to interact for successful innate immune activation. The inflammatory responsiveness of HLCs was accompanied by the downregulation of cytochrome P450 3A and 1A2 activity and decreased serum protein production, showing that the metabolic switch seen in primary hepatocytes during anti-viral responses is also present in HLCs.


Assuntos
Hepatócitos/imunologia , Imunidade Inata , Receptores de Reconhecimento de Padrão/metabolismo , Receptores Virais/imunologia , Antivirais/farmacologia , Diferenciação Celular , Citoplasma/metabolismo , Células-Tronco Embrionárias/metabolismo , Endossomos/metabolismo , Hepatócitos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Inflamação , Janus Quinases/metabolismo , Ligantes , Microscopia de Fluorescência , Receptores Virais/metabolismo , Transdução de Sinais/imunologia , Receptores Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Regulação para Cima
5.
J Vis Exp ; (149)2019 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-31380852

RESUMO

The development of renewable sources of liver tissue is required to improve cell-based modelling, and develop human tissue for transplantation. Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) represent promising sources of human liver spheres. We have developed a serum free and defined method of cellular differentiation to generate three-dimensional human liver spheres formed from human pluripotent stem cells. A potential limitation of the technology is the production of dense spheres with dead material inside. In order to circumvent this, we have employed agarose microwell technology at defined cell densities to control the size of the 3D spheres, preventing the generation of apoptotic and/or necrotic cores.  Notably, the spheres generated by our approach display liver function and stable phenotype, representing a valuable resource for basic and applied scientific research. We believe that our approach could be used as a platform technology to develop further tissues to model and treat human disease and in the future may permit the generation of human tissue with complex tissue architecture.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Fígado/citologia , Células-Tronco Pluripotentes/fisiologia , Contagem de Células , Diferenciação Celular , Meios de Cultura Livres de Soro , Humanos , Esferoides Celulares
6.
Artigo em Inglês | MEDLINE | ID: mdl-29786555

RESUMO

Stem cell-derived hepatocyte-like cells (HLCs) offer great opportunities for studies of host-pathogen interactions and tissue regeneration, as well as hepatotoxicity. To reliably predict the outcome of infection or to enhance graft survival, a finely tuned innate immune system is essential. Hepatocytes have long been considered solely metabolic and their critical innate immune potential is only recently gaining attention. Viral infection studies show that pathogen detection by cytosolic receptors leads to interferon (IFN) induction in primary hepatocytes and HLCs. IFN expression in HLCs is characterized by strong expression of type III IFN and low expression of type I IFN which is also a characteristic of primary hepatocytes. The response to IFN differs in HLCs with lower interferon-stimulated gene (ISG)-expression levels than in primary hepatocytes. Tumour necrosis factor-alpha (TNF-α) signalling is less studied in HLCs, but appears to be functional. Expression of toll-like receptors (TLR) 2-5, 7 and 9 has been reported in primary hepatocytes but has been poorly studied in HLCs. In summary, although they retain some immature features, HLCs are in many ways superior to hepatoma cell lines for cell-based modelling. In this review, we will provide an overview of innate immune signalling in HLCs and how this compares with primary hepatocytes.This article is part of the themed issue 'Designer human tissue: coming to a lab near you'.


Assuntos
Hepatócitos/imunologia , Imunidade Inata/fisiologia , Células-Tronco Pluripotentes Induzidas/imunologia , Transdução de Sinais , Interações Hospedeiro-Patógeno , Humanos
7.
J Clin Virol ; 69: 150-5, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26209398

RESUMO

BACKGROUND: Drug-resistant cytomegalovirus causes major problems in immunocompromised patients and is due to mutations in the UL97-gene (phosphotransferase) and/or the UL54-gene (polymerase). OBJECTIVE: Three previously unknown UL97-mutations (E596D/Y and I610T), one UL54 single point mutation (D515E) and a UL54 triple mutation (D515E+L516M+I521T) were characterized for drug-resistance by marker transfer analysis using BAC-technology. STUDY DESIGN: Mutations were introduced into the bacterial artificial chromosome TB40-BACKL7-UL32EGFP. In addition, mutations M460V (UL97) and I521T (UL54) served as drug-resistant control. Phenotypic resistance testing was performed by a modified plaque reduction assay using a mixture of infected fibroblasts and uninfected ARPE-19 cells which improved formation of clearly definable plaques considerably. RESULTS: Resistance testing showed ganciclovir (GCV)-resistance for UL97-mutations I610T and E596Y while mutation E596D was drug-sensitive. UL54-mutation D515E was resistant to GCV. The virus strain containing the UL54 triple mutation conferred cross-resistance to GCV and cidofovir (CDV). None of the mutations interfered with normal growth kinetics of the virus. CONCLUSIONS: New mutations in the UL97- and UL54-gene of HCMV are still detected continuously. Furthermore, several mutations occurring in the same codon often show divergent phenotypes and the accumulation of multiple mutations in one virus strain may lead to increased or decreased drug-resistance. Therefore, characterization of newly detected mutations by marker transfer analysis is essential to confirm that genotypically detected mutations can produce phenotypic resistance. These results allow reliable interpretation of fast genotypic methods generally used in diagnostics.


Assuntos
Infecções por Citomegalovirus/virologia , Citomegalovirus/genética , DNA Polimerase Dirigida por DNA/genética , Farmacorresistência Viral Múltipla , Mutação , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas Virais/genética , Adulto , Antivirais/farmacologia , Linhagem Celular , Criança , Cromossomos Artificiais Bacterianos/genética , Cidofovir , Citomegalovirus/efeitos dos fármacos , Citomegalovirus/enzimologia , Infecções por Citomegalovirus/tratamento farmacológico , Citosina/análogos & derivados , Citosina/farmacologia , Feminino , Ganciclovir/farmacologia , Genótipo , Humanos , Lactente , Masculino , Organofosfonatos/farmacologia
8.
Dis Model Mech ; 8(1): 93-104, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25381012

RESUMO

Fracture healing is impaired in aged and osteoporotic individuals. Because adequate mechanical stimuli are able to increase bone formation, one therapeutical approach to treat poorly healing fractures could be the application of whole-body vibration, including low-magnitude high-frequency vibration (LMHFV). We investigated the effects of LMHFV on fracture healing in aged osteoporotic mice. Female C57BL/6NCrl mice (n=96) were either ovariectomised (OVX) or sham operated (non-OVX) at age 41 weeks. When aged to 49 weeks, all mice received a femur osteotomy that was stabilised using an external fixator. The mice received whole-body vibrations (20 minutes/day) with 0.3 G: peak-to-peak acceleration and a frequency of 45 Hz. After 10 and 21 days, the osteotomised femurs and intact bones (contra-lateral femurs, lumbar spine) were evaluated using bending-testing, micro-computed tomography (µCT), histology and gene expression analyses. LMHFV disturbed fracture healing in aged non-OVX mice, with significantly reduced flexural rigidity (-81%) and bone formation (-80%) in the callus. Gene expression analyses demonstrated increased oestrogen receptor ß (ERß, encoded by Esr2) and Sost expression in the callus of the vibrated animals, but decreased ß-catenin, suggesting that ERß might mediate these negative effects through inhibition of osteoanabolic Wnt/ß-catenin signalling. In contrast, in OVX mice, LMHFV significantly improved callus properties, with increased flexural rigidity (+1398%) and bone formation (+637%), which could be abolished by subcutaneous oestrogen application (0.025 mg oestrogen administered in a 90-day-release pellet). On a molecular level, we found an upregulation of ERα in the callus of the vibrated OVX mice, whereas ERß was unaffected, indicating that ERα might mediate the osteoanabolic response. Our results indicate a major role for oestrogen in the mechanostimulation of fracture healing and imply that LMHFV might only be safe and effective in confined target populations.


Assuntos
Estrogênios/fisiologia , Consolidação da Fratura , Receptores de Estrogênio/sangue , Vibração , Animais , Feminino , Fêmur/patologia , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Biossíntese de Proteínas , Transdução de Sinais , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA