Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 13(13): 2060-2077, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35731924

RESUMO

The Wnt signaling suppressor Notum is a promising target for osteoporosis, Alzheimer's disease, and colorectal cancers. To develop novel Notum inhibitors, we used an X-ray crystallographic fragment screen with the Diamond-SGC Poised Library (DSPL) and identified 59 fragment hits from the analysis of 768 data sets. Fifty-eight of the hits were found bound at the enzyme catalytic pocket with potencies ranging from 0.5 to >1000 µM. Analysis of the fragments' diverse binding modes, enzymatic inhibitory activities, and chemical properties led to the selection of six hits for optimization, and five of these resulted in improved Notum inhibitory potencies. One hit, 1-phenyl-1,2,3-triazole 7, and its related cluster members, have shown promising lead-like properties. These became the focus of our fragment development activities, resulting in compound 7d with IC50 0.0067 µM. The large number of Notum fragment structures and their initial optimization provided an important basis for further Notum inhibitor development.


Assuntos
Cristalografia por Raios X
2.
J Med Chem ; 65(10): 7212-7230, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35536179

RESUMO

Notum is a carboxylesterase that suppresses Wnt signaling through deacylation of an essential palmitoleate group on Wnt proteins. There is a growing understanding of the role Notum plays in human diseases such as colorectal cancer and Alzheimer's disease, supporting the need to discover improved inhibitors, especially for use in models of neurodegeneration. Here, we have described the discovery and profile of 8l (ARUK3001185) as a potent, selective, and brain-penetrant inhibitor of Notum activity suitable for oral dosing in rodent models of disease. Crystallographic fragment screening of the Diamond-SGC Poised Library for binding to Notum, supported by a biochemical enzyme assay to rank inhibition activity, identified 6a and 6b as a pair of outstanding hits. Fragment development of 6 delivered 8l that restored Wnt signaling in the presence of Notum in a cell-based reporter assay. Assessment in pharmacology screens showed 8l to be selective against serine hydrolases, kinases, and drug targets.


Assuntos
Inibidores Enzimáticos , Esterases , Encéfalo/metabolismo , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Esterases/metabolismo , Via de Sinalização Wnt
3.
SLAS Discov ; 26(9): 1200-1211, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34192965

RESUMO

The COVID-19 pandemic has clearly brought the healthcare systems worldwide to a breaking point, along with devastating socioeconomic consequences. The SARS-CoV-2 virus, which causes the disease, uses RNA capping to evade the human immune system. Nonstructural protein (nsp) 14 is one of the 16 nsps in SARS-CoV-2 and catalyzes the methylation of the viral RNA at N7-guanosine in the cap formation process. To discover small-molecule inhibitors of nsp14 methyltransferase (MTase) activity, we developed and employed a radiometric MTase assay to screen a library of 161 in-house synthesized S-adenosylmethionine (SAM) competitive MTase inhibitors and SAM analogs. Among six identified screening hits, SS148 inhibited nsp14 MTase activity with an IC50 value of 70 ± 6 nM and was selective against 20 human protein lysine MTases, indicating significant differences in SAM binding sites. Interestingly, DS0464 with an IC50 value of 1.1 ± 0.2 µM showed a bisubstrate competitive inhibitor mechanism of action. DS0464 was also selective against 28 out of 33 RNA, DNA, and protein MTases. The structure-activity relationship provided by these compounds should guide the optimization of selective bisubstrate nsp14 inhibitors and may provide a path toward a novel class of antivirals against COVID-19, and possibly other coronaviruses.


Assuntos
COVID-19/genética , Exorribonucleases/genética , Ligação Proteica/genética , SARS-CoV-2/genética , Proteínas não Estruturais Virais/genética , Antivirais/farmacologia , Sítios de Ligação/genética , COVID-19/virologia , Humanos , Metilação , Pandemias , RNA Viral/genética , SARS-CoV-2/patogenicidade , Replicação Viral/genética
4.
Nature ; 594(7863): 430-435, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34079124

RESUMO

The tumour suppressor APC is the most commonly mutated gene in colorectal cancer. Loss of Apc in intestinal stem cells drives the formation of adenomas in mice via increased WNT signalling1, but reduced secretion of WNT ligands increases the ability of Apc-mutant intestinal stem cells to colonize a crypt (known as fixation)2. Here we investigated how Apc-mutant cells gain a clonal advantage over wild-type counterparts to achieve fixation. We found that Apc-mutant cells are enriched for transcripts that encode several secreted WNT antagonists, with Notum being the most highly expressed. Conditioned medium from Apc-mutant cells suppressed the growth of wild-type organoids in a NOTUM-dependent manner. Furthermore, NOTUM-secreting Apc-mutant clones actively inhibited the proliferation of surrounding wild-type crypt cells and drove their differentiation, thereby outcompeting crypt cells from the niche. Genetic or pharmacological inhibition of NOTUM abrogated the ability of Apc-mutant cells to expand and form intestinal adenomas. We identify NOTUM as a key mediator during the early stages of mutation fixation that can be targeted to restore wild-type cell competitiveness and provide preventative strategies for people at a high risk of developing colorectal cancer.


Assuntos
Competição entre as Células , Transformação Celular Neoplásica , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Esterases/metabolismo , Genes APC , Mutação , Adenoma/genética , Adenoma/patologia , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Competição entre as Células/genética , Diferenciação Celular , Proliferação de Células , Transformação Celular Neoplásica/genética , Meios de Cultivo Condicionados , Progressão da Doença , Esterases/antagonistas & inibidores , Esterases/genética , Feminino , Humanos , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Organoides/citologia , Organoides/metabolismo , Organoides/patologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt
5.
Future Med Chem ; 13(11): 1001-1015, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33882714

RESUMO

Notum has recently been identified as a negative regulator of Wnt signaling through the removal of an essential palmitoleate group from Wnt proteins. There are emerging reports that Notum plays a role in human disease, with published data suggesting that targeting Notum could represent a new therapeutic approach for treating cancer, osteoporosis and neurodegenerative disorders. Complementary hit-finding strategies have been applied with successful approaches that include high-throughput screening, activity-based protein profiling, screening of fragment libraries and virtual screening campaigns. Structural studies are accelerating the discovery of new inhibitors of Notum. Three fit-for-purpose examples are LP-922056, ABC99 and ARUK3001185. The application of these small-molecule inhibitors is helping to further advance an understanding of the role Notum plays in human disease.


Assuntos
Inibidores Enzimáticos/farmacologia , Esterases/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Inibidores Enzimáticos/química , Esterases/metabolismo , Humanos , Modelos Moleculares , Estrutura Molecular , Bibliotecas de Moléculas Pequenas/química
6.
bioRxiv ; 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33619486

RESUMO

The COVID-19 pandemic has clearly brought the healthcare systems world-wide to a breaking point along with devastating socioeconomic consequences. The SARS-CoV-2 virus which causes the disease uses RNA capping to evade the human immune system. Non-structural protein (nsp) 14 is one of the 16 nsps in SARS-CoV-2 and catalyzes the methylation of the viral RNA at N7-guanosine in the cap formation process. To discover small molecule inhibitors of nsp14 methyltransferase (MT) activity, we developed and employed a radiometric MT assay to screen a library of 161 in house synthesized S-adenosylmethionine (SAM) competitive methyltransferase inhibitors and SAM analogs. Among seven identified screening hits, SS148 inhibited nsp14 MT activity with an IC 50 value of 70 ± 6 nM and was selective against 20 human protein lysine methyltransferases indicating significant differences in SAM binding sites. Interestingly, DS0464 with IC 50 value of 1.1 ± 0.2 µM showed a bi-substrate competitive inhibitor mechanism of action. Modeling the binding of this compound to nsp14 suggests that the terminal phenyl group extends into the RNA binding site. DS0464 was also selective against 28 out of 33 RNA, DNA, and protein methyltransferases. The structure-activity relationship provided by these compounds should guide the optimization of selective bi-substrate nsp14 inhibitors and may provide a path towards a novel class of antivirals against COVID-19, and possibly other coronaviruses.

7.
ACS Chem Biol ; 12(10): 2619-2630, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-28849908

RESUMO

Histone acetyltransferases of the MYST family are recruited to chromatin by BRPF scaffolding proteins. We explored functional consequences and the therapeutic potential of inhibitors targeting acetyl-lysine dependent protein interaction domains (bromodomains) present in BRPF1-3 in bone maintenance. We report three potent and selective inhibitors: one (PFI-4) with high selectivity for the BRPF1B isoform and two pan-BRPF bromodomain inhibitors (OF-1, NI-57). The developed inhibitors displaced BRPF bromodomains from chromatin and did not inhibit cell growth and proliferation. Intriguingly, the inhibitors impaired RANKL-induced differentiation of primary murine bone marrow cells and human primary monocytes into bone resorbing osteoclasts by specifically repressing transcriptional programs required for osteoclastogenesis. The data suggest a key role of BRPF in regulating gene expression during osteoclastogenesis, and the excellent druggability of these bromodomains may lead to new treatment strategies for patients suffering from bone loss or osteolytic malignant bone lesions.


Assuntos
Células da Medula Óssea/fisiologia , Proteínas de Transporte/metabolismo , Diferenciação Celular/fisiologia , Osteoclastos/fisiologia , Animais , Proteínas de Transporte/genética , Biologia Computacional , Humanos , Modelos Moleculares , Família Multigênica , Análise Serial de Proteínas , Conformação Proteica , Domínios Proteicos , Células-Tronco
8.
J Med Chem ; 60(16): 6998-7011, 2017 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-28714688

RESUMO

The bromodomain and plant homeodomain finger-containing (BRPF) family are scaffolding proteins important for the recruitment of histone acetyltransferases of the MYST family to chromatin. Here, we describe NI-57 (16) as new pan-BRPF chemical probe of the bromodomain (BRD) of the BRPFs. Inhibitor 16 preferentially bound the BRD of BRPF1 and BRPF2 over BRPF3, whereas binding to BRD9 was weaker. Compound 16 has excellent selectivity over nonclass IV BRD proteins. Target engagement of BRPF1B and BRPF2 with 16 was demonstrated in nanoBRET and FRAP assays. The binding of 16 to BRPF1B was rationalized through an X-ray cocrystal structure determination, which showed a flipped binding orientation when compared to previous structures. We report studies that show 16 has functional activity in cellular assays by modulation of the phenotype at low micromolar concentrations in both cancer and inflammatory models. Pharmacokinetic data for 16 was generated in mouse with single dose administration showing favorable oral bioavailability.


Assuntos
Quinolonas/farmacologia , Sulfonamidas/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Desenho de Fármacos , Estabilidade de Medicamentos , Meia-Vida , Humanos , Camundongos , Microssomos Hepáticos/metabolismo , Proteínas Nucleares/metabolismo , Domínios e Motivos de Interação entre Proteínas , Quinolonas/administração & dosagem , Quinolonas/síntese química , Quinolonas/farmacocinética , Relação Estrutura-Atividade , Sulfonamidas/administração & dosagem , Sulfonamidas/síntese química , Sulfonamidas/farmacocinética
9.
J Med Chem ; 60(2): 668-680, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28068087

RESUMO

The BRPF (bromodomain and PHD finger-containing) family are scaffolding proteins important for the recruitment of histone acetyltransferases of the MYST family to chromatin. Evaluation of the BRPF family as a potential drug target is at an early stage although there is an emerging understanding of a role in acute myeloid leukemia (AML). We report the optimization of fragment hit 5b to 13-d as a biased, potent inhibitor of the BRD of the BRPFs with excellent selectivity over nonclass IV BRD proteins. Evaluation of 13-d in a panel of cancer cell lines showed a selective inhibition of proliferation of a subset of AML lines. Pharmacokinetic studies established that 13-d had properties compatible with oral dosing in mouse models of disease (Fpo 49%). We propose that NI-42 (13-d) is a new chemical probe for the BRPFs suitable for cellular and in vivo studies to explore the fundamental biology of these proteins.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Antineoplásicos/farmacologia , Proteínas Nucleares/antagonistas & inibidores , Quinolonas/farmacologia , Sulfonamidas/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos , Microssomos Hepáticos/metabolismo , Domínios Proteicos , Quinolonas/síntese química , Quinolonas/química , Quinolonas/farmacocinética , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química , Sulfonamidas/farmacocinética
10.
Proc Natl Acad Sci U S A ; 111(35): 12853-8, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25136132

RESUMO

SET domain containing (lysine methyltransferase) 7 (SETD7) is implicated in multiple signaling and disease related pathways with a broad diversity of reported substrates. Here, we report the discovery of (R)-PFI-2-a first-in-class, potent (Ki (app) = 0.33 nM), selective, and cell-active inhibitor of the methyltransferase activity of human SETD7-and its 500-fold less active enantiomer, (S)-PFI-2. (R)-PFI-2 exhibits an unusual cofactor-dependent and substrate-competitive inhibitory mechanism by occupying the substrate peptide binding groove of SETD7, including the catalytic lysine-binding channel, and by making direct contact with the donor methyl group of the cofactor, S-adenosylmethionine. Chemoproteomics experiments using a biotinylated derivative of (R)-PFI-2 demonstrated dose-dependent competition for binding to endogenous SETD7 in MCF7 cells pretreated with (R)-PFI-2. In murine embryonic fibroblasts, (R)-PFI-2 treatment phenocopied the effects of Setd7 deficiency on Hippo pathway signaling, via modulation of the transcriptional coactivator Yes-associated protein (YAP) and regulation of YAP target genes. In confluent MCF7 cells, (R)-PFI-2 rapidly altered YAP localization, suggesting continuous and dynamic regulation of YAP by the methyltransferase activity of SETD7. These data establish (R)-PFI-2 and related compounds as a valuable tool-kit for the study of the diverse roles of SETD7 in cells and further validate protein methyltransferases as a druggable target class.


Assuntos
Inibidores Enzimáticos/farmacologia , Epigênese Genética/efeitos dos fármacos , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Histona-Lisina N-Metiltransferase/metabolismo , Pirrolidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Tetra-Hidroisoquinolinas/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Fibroblastos/efeitos dos fármacos , Via de Sinalização Hippo , Histona-Lisina N-Metiltransferase/genética , Humanos , Células MCF-7 , Metiltransferases/antagonistas & inibidores , Metiltransferases/metabolismo , Mutação , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Pirrolidinas/química , Relação Estrutura-Atividade , Sulfonamidas/química , Tetra-Hidroisoquinolinas/química , Fatores de Transcrição , Proteínas de Sinalização YAP
11.
Cancer Res ; 73(11): 3336-46, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23576556

RESUMO

Bromo and extra terminal (BET) proteins (BRD2, BRD3, BRD4, and BRDT) are transcriptional regulators required for efficient expression of several growth promoting and antiapoptotic genes as well as for cell-cycle progression. BET proteins are recruited on transcriptionally active chromatin via their two N-terminal bromodomains (BRD), a protein interaction module that specifically recognizes acetylated lysine residues in histones H3 and H4. Inhibition of the BET-histone interaction results in transcriptional downregulation of a number of oncogenes, providing a novel pharmacologic strategy for the treatment of cancer. Here, we present a potent and highly selective dihydroquinazoline-2-one inhibitor, PFI-1, which efficiently blocks the interaction of BET BRDs with acetylated histone tails. Cocrystal structures showed that PFI-1 acts as an acetyl-lysine (Kac) mimetic inhibitor efficiently occupying the Kac binding site in BRD4 and BRD2. PFI-1 has antiproliferative effects on leukemic cell lines and efficiently abrogates their clonogenic growth. Exposure of sensitive cell lines with PFI-1 results in G1 cell-cycle arrest, downregulation of MYC expression, as well as induction of apoptosis and induces differentiation of primary leukemic blasts. Intriguingly, cells exposed to PFI-1 showed significant downregulation of Aurora B kinase, thus attenuating phosphorylation of the Aurora substrate H3S10, providing an alternative strategy for the specific inhibition of this well-established oncology target.


Assuntos
Proteínas Nucleares/antagonistas & inibidores , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Quinazolinas/farmacologia , Fatores de Transcrição/antagonistas & inibidores , Animais , Apoptose/fisiologia , Proteínas de Ciclo Celular , Processos de Crescimento Celular/fisiologia , Criança , Regulação para Baixo , Humanos , Camundongos , Camundongos Endogâmicos NOD , Modelos Moleculares , Terapia de Alvo Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fosforilação , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Bioorg Med Chem Lett ; 18(24): 6562-7, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18945617

RESUMO

Succinyl hydroxamates 1 and 2 are disclosed as novel series of potent and selective inhibitors of procollagen C-proteinase (PCP) which may have potential as anti-fibrotic agents. Carboxamide 7 demonstrated good PCP inhibition and had excellent selectivity over MMPs involved in wound healing. In addition, 7 was effective in a cell-based model of collagen deposition (fibroplasia model) and was very effective at penetrating human skin in vitro. Compound 7 (UK-383,367) was selected as a candidate for evaluation in clinical studies as a topically applied, dermal anti-scarring agent.


Assuntos
Proteína Morfogenética Óssea 1/química , Química Farmacêutica/métodos , Cicatriz Hipertrófica/tratamento farmacológico , Cicatriz/tratamento farmacológico , Ácidos Hidroxâmicos/química , Administração Cutânea , Linhagem Celular Tumoral , Desenho de Fármacos , Epiderme/efeitos dos fármacos , Fibrose/patologia , Humanos , Concentração Inibidora 50 , Modelos Químicos , Conformação Molecular , Oxazóis/química
13.
Bioorg Med Chem Lett ; 18(9): 2896-9, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18417343

RESUMO

A novel series of pyridyl-phenyl ethers are disclosed, which possess dual 5-HT and NA reuptake pharmacology with good selectivity over dopamine reuptake inhibition. An analysis of the relationship between lipophilicity and pharmacology highlighted that potent dual SNRI activity was only achievable at c log P>3.5. The series was found to possess significant polypharmacology issues, and we concluded that this off-target promiscuity was related to lipophilicity.


Assuntos
Aminas/farmacologia , Hepatócitos/efeitos dos fármacos , Norepinefrina/antagonistas & inibidores , Éteres Fenílicos/farmacologia , Piridinas/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Antagonistas do Receptor 5-HT1 de Serotonina , Aminas/síntese química , Hepatócitos/metabolismo , Humanos , Concentração Inibidora 50 , Modelos Químicos , Éteres Fenílicos/síntese química , Piridinas/síntese química , Inibidores Seletivos de Recaptação de Serotonina/síntese química , Relação Estrutura-Atividade
14.
Bioorg Med Chem Lett ; 18(6): 1795-8, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18313294
17.
J Chem Inf Model ; 47(1): 170-5, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17238262

RESUMO

The ability to cross the blood brain barrier (BBB), sometimes expressed as BBB+ and BBB-, is a very important property in drug design. Several computational methods have been employed for the prediction of BBB-penetrating (BBB+) and nonpenetrating (BBB-) compounds with overall accuracies from 75 to 97%. However, most of these models use a large number of descriptors (67-199), and it is not easy to implement the models in order to predict values of BBB+/-. In this work, 19 simple molecular descriptors calculated from Algorithm Builder and fragmentation schemes were used for the analysis of 1593 BBB+/- data. The results show that hydrogen-bonding properties of compounds play a very important role in modeling BBB penetration. Several BBB models based on hydrogen-bonding properties, such as Abraham descriptors, polar surface area (PSA), and number of hydrogen bonding donors and acceptors, have been built using binomial-PLS analysis. The results show that the overall classification accuracy for a training set is over 90%, and overall prediction accuracy for a test set is over 95%.


Assuntos
Barreira Hematoencefálica/metabolismo , Permeabilidade , Farmacocinética , Relação Quantitativa Estrutura-Atividade , Inteligência Artificial , Classificação , Ligação de Hidrogênio , Métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA