Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Int J Mol Sci ; 25(11)2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38892109

RESUMO

Astronauts on exploratory missions will be exposed to galactic cosmic rays (GCR), which can induce neuroinflammation and oxidative stress (OS) and may increase the risk of neurodegenerative disease. As key regulators of inflammation and OS in the CNS, microglial cells may be involved in GCR-induced deficits, and therefore could be a target for neuroprotection. This study assessed the effects of exposure to helium (4He) and iron (56Fe) particles on inflammation and OS in microglia in vitro, to establish a model for testing countermeasure efficacy. Rat microglia were exposed to a single dose of 20 cGy (300 MeV/n) 4He or 2 Gy 56Fe (600 MeV/n), while the control cells were not exposed (0 cGy). Immediately following irradiation, fresh media was applied to the cells, and biomarkers of inflammation (cyclooxygenase-2 [COX-2], nitric oxide synthase [iNOS], phosphorylated IκB-α [pIκB-α], tumor necrosis factor-α [TNFα], and nitrite [NO2-]) and OS (NADPH oxidase [NOX2]) were assessed 24 h later using standard immunochemical techniques. Results showed that radiation did not increase levels of NO2- or protein levels of COX-2, iNOS, pIκB-α, TNFα, or NOX2 compared to non-irradiated control conditions in microglial cells (p > 0.05). Therefore, microglia in isolation may not be the primary cause of neuroinflammation and OS following exposures to helium or iron GCR particles.


Assuntos
Biomarcadores , Radiação Cósmica , Inflamação , Microglia , Estresse Oxidativo , Animais , Microglia/metabolismo , Microglia/efeitos da radiação , Radiação Cósmica/efeitos adversos , Estresse Oxidativo/efeitos da radiação , Ratos , Inflamação/metabolismo , Inflamação/etiologia , Biomarcadores/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Ferro/metabolismo , Ciclo-Oxigenase 2/metabolismo , Hélio/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , NADPH Oxidase 2/metabolismo
2.
Nutr Neurosci ; 26(2): 127-137, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36692990

RESUMO

ABSTRACTMicroglia are key regulators of inflammation and oxidative stress (OS) in the CNS. Microglia activation can lead to chronic inflammation, OS, and neurodegeneration. Blueberries (BB) reduce inflammation and OS when administered to microglia before stressors such as lipopolysaccharide (LPS), but the therapeutic value of BBs administered after activation by stressors has not been examined. Therefore, this study investigated the differential effects of pre-, post-, and pre-/post-BB on inflammation and OS in LPS-activated microglia. Rat microglia were pretreated with BB (0.5 mg/mL) or control media (C) for 24 hours, incubated overnight with LPS (0 or 200 ng/mL), and post-treated with BB or C for 24 hours. Biomarkers of inflammation (e.g. nitrite [NO2-], tumor necrosis factor-ɑ [TNFɑ], inducible nitric oxide synthase [iNOS], cyclooxygenase-2 [COX-2], phosphorylated IκB-α [pIκB-ɑ]) and OS (e.g. NADPH oxidase [NOX2]) were assessed. LPS increased NO2-, TNFɑ, COX-2, iNOS, pIκB-ɑ, and NOX2 compared to non-stressed conditions (P < 0.05), however BB before and/or after LPS significantly reduced these markers compared to no BB (P < 0.05). Pre-BB was more effective than post-BB at reducing LPS-induced NO2-, TNFɑ, and COX-2 (P < 0.05). Pre-BB was also more effective than pre-/post-BB at attenuating LPS-induced NO2- and TNFɑ (P < 0.05). All BB treatments were equally effective in reducing LPS-induced iNOS, pIκB-ɑ, and NOX2. Results suggest that BBs can target the downstream events of LPS-induced microglial activation and prevent stressor-induced neuroinflammation and OS. Furthermore, BBs may not need to be present prior to microglial activation for beneficial effects, suggesting that dietary interventions may be effective even after initiation of disease processes.Graphical Abstract. Cascade of inflammatory and OS-inducing events associated with self-propelling microglial activation by LPS and the effects of blueberry (0.5 mg/mL) administered before and/or after LPS on these processes (blue arrows). BB, blueberry; COX2, cyclooxygenase-2; IκB-ɑ, inhibitor kappa-B-ɑ; iNOS, inducible nitric oxide synthase; LPS, lipopolysaccharide; NF-κB, nuclear factor kappa-B; NO, nitric oxide; NOX2, NADPH oxidase; OS, oxidative stress; ROS, reactive oxygen species; TNFɑ, tumor necrosis factor-ɑ.


Assuntos
Mirtilos Azuis (Planta) , Microglia , Ratos , Animais , Transdução de Sinais , Lipopolissacarídeos/farmacologia , Inibidor de NF-kappaB alfa/farmacologia , Inibidor de NF-kappaB alfa/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Ciclo-Oxigenase 2/efeitos adversos , Ciclo-Oxigenase 2/metabolismo , Dióxido de Nitrogênio/efeitos adversos , NF-kappa B/metabolismo , Inflamação/induzido quimicamente , Inflamação/prevenção & controle , Inflamação/tratamento farmacológico , NADPH Oxidases/metabolismo , NADPH Oxidases/farmacologia , NADPH Oxidases/uso terapêutico , Estresse Oxidativo , Óxido Nítrico/metabolismo
3.
Molecules ; 27(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36234687

RESUMO

The aging process impacts neural stem cells and causes a significant decline in neurogenesis that contributes to neuronal dysfunction leading to cognitive decline. Blueberries are rich in polyphenols and have been shown to improve cognition and memory in older humans. While our previous studies have shown that blueberry supplementations can increase neurogenesis in aged rodents, it is not clear whether this finding can be extrapolated to humans. We thus investigated the effects of blueberry treatments on adult hippocampal human neural progenitor cells (AHNPs) that are involved in neurogenesis and potentially in memory and other brain functions. Cultured AHNPs were treated with blueberry extract at different concentrations. Their viability, proliferation, and differentiation were evaluated with and without the presence of a cellular oxidative stressor, dopamine, and potential cellular mechanisms were also investigated. Our data showed that blueberry extract can significantly increase the viability and proliferation rates of control hippocampal AHNPs and can also reverse decreases in viability and proliferation induced by the cellular stressor dopamine. These effects may be associated with blueberry's anti-inflammatory, antioxidant, and calcium-buffering properties. Polyphenol-rich berry extracts thus confer a neuroprotective effect on human hippocampal progenitor cells in vitro.


Assuntos
Mirtilos Azuis (Planta) , Células-Tronco Neurais , Fármacos Neuroprotetores , Adulto , Idoso , Anti-Inflamatórios , Antioxidantes/farmacologia , Cálcio , Dopamina , Humanos , Fármacos Neuroprotetores/farmacologia , Extratos Vegetais/farmacologia , Polifenóis/farmacologia
4.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36293507

RESUMO

Age-related decrements in the central nervous system (CNS) are thought to result from: (1) increased susceptibility to and accumulating effects of free radicals and inflammation; and (2) dysregulation in Ca2+ homeostasis, which affects numerous signaling pathways. Certain bioactive phytochemicals exhibit potent anti-inflammatory activities which may mitigate these age-related CNS decrements. This study investigated the individual and combination effects of green tea catechin (epigallocatechin gallate, EGCG), curcumin from turmeric, and broccoli sprouts which contain the isothiocyanate sulforaphane on inflammation and dysregulation in Ca2+ homeostasis to determine if the individual compounds were working synergistically and/or through independent mechanisms. Rat hippocampal neurons or highly aggressive proliferating immortalized (HAPI) microglial cells were pre-treated for a week with either the individual components or all in combination before inducing Ca2+ buffering deficits with dopamine (DA, 0.1 µM for 2 h) or inflammation using lipopolysaccharide (LPS, 100 ng/mL for 18 h), respectively. The EGCG (3 µM) and combination protected against DA-induced deficits in Ca2+ buffering (both % of cells that recovered and recovery time, p < 0.05). Additionally, the EGCG and combination reduced stress-mediated inflammation in HAPI rat microglial cells by attenuating LPS-induced nitrite release, inducible nitrous oxide synthase (iNOS) expression, and tumor necrosis factor-alpha (TNF-α) release (p < 0.05), but not cyclooxygenase-2 (COX-2) expression. Overall, broccoli sprouts (2 µM) and curcumin (1 µM) were not as effective as the EGCG or combination. Further research is needed to determine if dietary intervention with a variety of foods containing compounds such as those found in green tea, turmeric, or broccoli sprouts can play a role in reducing age-related CNS inflammation, microglial activation, and downstream signaling pathways that can lead to neuronal dysfunction.


Assuntos
Catequina , Curcumina , Animais , Ratos , Microglia/metabolismo , Catequina/uso terapêutico , Lipopolissacarídeos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Curcumina/uso terapêutico , Dopamina/metabolismo , Ciclo-Oxigenase 2/metabolismo , Nitritos/metabolismo , Óxido Nitroso/efeitos adversos , Óxido Nitroso/metabolismo , Neurônios/metabolismo , Isotiocianatos/uso terapêutico , Chá/metabolismo , Inflamação/patologia , Anti-Inflamatórios/farmacologia , Compostos Fitoquímicos/uso terapêutico , Hipocampo/metabolismo
5.
mBio ; 13(5): e0185822, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36154190

RESUMO

Despite having a highly reduced genome, Chlamydia trachomatis undergoes a complex developmental cycle in which the bacteria differentiate between the following two functionally and morphologically distinct forms: the infectious, nonreplicative elementary body (EB) and the noninfectious, replicative reticulate body (RB). The transitions between EBs and RBs are not mediated by division events that redistribute intracellular proteins. Rather, both primary (EB to RB) and secondary (RB to EB) differentiation likely require bulk protein turnover. One system for targeted protein degradation is the trans-translation system for ribosomal rescue, where polypeptides stalled during translation are marked with an SsrA tag encoded by a hybrid tRNA-mRNA, tmRNA. ClpX recognizes the SsrA tag, leading to ClpXP-mediated degradation. We hypothesize that ClpX functions in chlamydial differentiation through targeted protein degradation. We found that mutation of a key residue (R230A) within the specific motif in ClpX associated with the recognition of SsrA-tagged substrates resulted in abrogated secondary differentiation while not reducing chlamydial replication or developmental cycle progression as measured by transcripts. Furthermore, inhibition of trans-translation through chemical and targeted genetic approaches also impeded chlamydial development. Knockdown of tmRNA and subsequent complementation with an allele mutated in the SsrA tag closely phenocopied the overexpression of ClpXR230A, thus suggesting that ClpX recognition of SsrA-tagged substrates plays a critical function in secondary differentiation. Taken together, these data provide mechanistic insight into the requirements for transitions between chlamydial developmental forms. IMPORTANCE Chlamydia trachomatis is the leading cause of bacterial sexually transmitted infections and preventable infectious blindness. This unique organism undergoes developmental transitions between infectious, nondividing forms and noninfectious, dividing forms. Therefore, the chlamydial developmental cycle is an attractive target for Chlamydia-specific antibiotics, which would minimize effects of broad-spectrum antibiotics on the spread of antibiotic resistance in other organisms. However, the lack of knowledge about chlamydial development on a molecular level impedes the identification of specific, druggable targets. This work describes a mechanism through which both the fundamental processes of trans-translation and proteomic turnover by ClpXP contribute to chlamydial differentiation, a critical facet of chlamydial growth and survival. Given the almost universal presence of trans-translation and ClpX in eubacteria, this mechanism may be conserved in developmental cycles of other bacterial species. Additionally, this study expands the fields of trans-translation and Clp proteases by emphasizing the functional diversity of these systems throughout bacterial evolution.


Assuntos
Chlamydia trachomatis , Proteômica , Chlamydia trachomatis/metabolismo , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Peptídeos/metabolismo , Antibacterianos/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Bactérias/metabolismo
6.
Psychopharmacology (Berl) ; 239(5): 1279-1288, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33932162

RESUMO

OBJECTIVES: Long-term cannabis use has been associated with the appearance of psychotic symptoms and schizophrenia-like cognitive impairments; however these studies may be confounded by concomitant use of tobacco by cannabis users. We aimed to determine if previously observed cannabis-associated deficits in sensory gating would be seen in cannabis users with no history of tobacco use, as evidenced by changes in the P50, N100, and P200 event-related potentials. A secondary objective of this study was to examine the effects of acute nicotine administration on cannabis users with no tobacco use history. METHODS: Three components (P50, N100, P200) of the mid-latency auditory-evoked response (MLAER) were elicited by a paired-stimulus paradigm in 43 healthy, non-tobacco smoking male volunteers between the ages of 18-30. Cannabis users (CU, n = 20) were administered nicotine (6 mg) and placebo gum within a randomized, double-blind design. Non-cannabis users (NU, n = 23) did not receive nicotine. RESULTS: Between-group sensory gating effects were only observed for the N100, with CUs exhibiting a smaller N100 to S1 of the paired stimulus paradigm, in addition to reduced dN100 (indicating poorer gating). Results revealed no significant sensory gating differences with acute administration of nicotine compared to placebo cannabis conditions. CONCLUSIONS: These findings suggest a relationship between gating impairment and cannabis use; however, acute nicotine administration nicotine does not appear to impact sensory gating function.


Assuntos
Cannabis , Alucinógenos , Estimulação Acústica/métodos , Adolescente , Adulto , Agonistas de Receptores de Canabinoides/farmacologia , Eletroencefalografia , Potenciais Evocados Auditivos , Alucinógenos/farmacologia , Humanos , Masculino , Nicotina/efeitos adversos , Filtro Sensorial , Nicotiana , Adulto Jovem
7.
mBio ; 11(5)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32873765

RESUMO

Chlamydia trachomatis is an obligate intracellular bacterium that undergoes a complex developmental cycle in which the bacterium differentiates between two functionally and morphologically distinct forms, the elementary body (EB) and reticulate body (RB), each of which expresses its own specialized repertoire of proteins. Both primary (EB to RB) and secondary (RB to EB) differentiations require protein turnover, and we hypothesize that proteases are critical for mediating differentiation. The Clp protease system is well conserved in bacteria and important for protein turnover. Minimally, the system relies on a serine protease subunit, ClpP, and an AAA+ ATPase, such as ClpX, that recognizes and unfolds substrates for ClpP degradation. In Chlamydia, ClpX is encoded within an operon 3' to clpP2 We present evidence that the chlamydial ClpX and ClpP2 orthologs are essential to organism viability and development. We demonstrate here that chlamydial ClpX is a functional ATPase and forms the expected homohexamer in vitro Overexpression of a ClpX mutant lacking ATPase activity had a limited impact on DNA replication or secondary differentiation but, nonetheless, reduced EB viability with observable defects in EB morphology noted. Conversely, overexpression of a catalytically inactive ClpP2 mutant significantly impacted developmental cycle progression by reducing the overall number of organisms. Blocking clpP2X transcription using CRISPR interference led to a decrease in bacterial growth, and this effect was complemented in trans by a plasmid copy of clpP2 Taken together, our data indicate that ClpX and the associated ClpP2 serve distinct functions in chlamydial developmental cycle progression and differentiation.IMPORTANCEChlamydia trachomatis is the leading cause of infectious blindness globally and the most reported bacterial sexually transmitted infection both domestically and internationally. Given the economic burden, the lack of an approved vaccine, and the use of broad-spectrum antibiotics for treatment of infections, an understanding of chlamydial growth and development is critical for the advancement of novel targeted antibiotics. The Clp proteins comprise an important and conserved protease system in bacteria. Our work highlights the importance of the chlamydial Clp proteins to this clinically important bacterium. Additionally, our study implicates the Clp system playing an integral role in chlamydial developmental cycle progression, which may help establish models of how Chlamydia spp. and other bacteria progress through their respective developmental cycles. Our work also contributes to a growing body of Clp-specific research that underscores the importance and versatility of this system throughout bacterial evolution and further validates Clp proteins as drug targets.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/genética , Chlamydia trachomatis/crescimento & desenvolvimento , Chlamydia trachomatis/genética , Endopeptidase Clp/genética , Serina Endopeptidases/genética , Adenosina Trifosfatases/genética , Animais , Proteínas de Bactérias/metabolismo , Linhagem Celular , Chlamydia trachomatis/metabolismo , Endopeptidase Clp/metabolismo , Regulação Bacteriana da Expressão Gênica , Células HeLa , Humanos , Camundongos , Viabilidade Microbiana/genética , Serina Endopeptidases/metabolismo
8.
Inflammation ; 43(1): 241-250, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31741196

RESUMO

Walnuts have high levels of the omega-3 fatty acid alpha-linolenic acid (C18:3n-3, ALA) and the omega-6 fatty acid linoleic acid (C18:2n-6, LA). Previous research has demonstrated that pre-treatment of BV-2 microglia with walnut extract inhibited lipopolysaccharide (LPS)-induced activation of microglia. As an extension of that study, the effects of walnut-associated fatty acids on BV-2 microglia were assessed. BV-2 murine microglia cells were treated with LA, ALA, or a combination of LA+ALA prior to or after exposure to LPS. Nitric oxide (NO) and tumor necrosis factor-alpha (TNF-alpha) were measured in cell-conditioned media. Cyclooxeganse-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression were assessed in BV-2 microglia. Both LA and ALA protected against LPS-induced increases in NO, iNOS, COX-2, and TNF-alpha when used before LPS exposure. When BV-2 microglia were treated with fatty acids after LPS, only COX-2 and TNF-alpha were significantly attenuated by the fatty acids. There was no synergism of LA+ALA, as the LA+ALA combination was no more effective than LA or ALA alone. Fatty acids, like those found in walnuts, may protect against production of cytotoxic intermediates and cell-signaling molecules from microglia and may prove beneficial for preventing age- or disease-related neurodegeneration.


Assuntos
Anti-Inflamatórios/farmacologia , Juglans , Ácido Linoleico/farmacologia , Lipopolissacarídeos/toxicidade , Microglia/efeitos dos fármacos , Nozes , Ácido alfa-Linolênico/farmacologia , Animais , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Mediadores da Inflamação/metabolismo , Camundongos , Microglia/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
9.
Food Funct ; 10(12): 7707-7713, 2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31746877

RESUMO

Berry fruits contain a variety of bioactive polyphenolic compounds that exhibit potent antioxidant and anti-inflammatory activities. We have shown that consumption of freeze-dried whole berry powder, equivalent to 1 cup per day of blueberry (BB) or 2 cups per day of strawberry (SB), can differentially improve some aspects of cognition in healthy, older adults, compared to placebo-supplemented controls. We investigated whether fasting and postprandial serum from BB- or SB-supplemented older adults (60-75 years), taken at baseline or after 45 or 90 days of supplementation, would reduce the production of inflammatory and oxidative stress markers compared to serum from a placebo group, in LPS-stressed HAPI rat microglial cells, in vitro. Serum from both BB- and SB-supplemented participants reduced nitrite production, iNOS and COX-2 expression, and TNF-alpha release relative to serum from placebo controls (p < 0.05). Protection was greatest with serum from the 90-day time-point, suggesting that ongoing supplementation may provide the most health benefits. Serum was protective in both fasted and postprandial conditions, indicating that the effects are not only acute and that the meal did not challenge subjects' ability to regulate oxidative and inflammatory stress. These results suggest that berry metabolites, present in the circulating blood following ingestion, may be mediating the anti-inflammatory effects of dietary berry fruit.


Assuntos
Envelhecimento/sangue , Mirtilos Azuis (Planta)/metabolismo , Fragaria/metabolismo , Estresse Oxidativo , Idoso , Envelhecimento/imunologia , Animais , Método Duplo-Cego , Feminino , Frutas/metabolismo , Humanos , Masculino , Microglia/imunologia , Pessoa de Meia-Idade , Óxido Nítrico/sangue , Óxido Nítrico Sintase Tipo II/sangue , Período Pós-Prandial , Ratos , Fator de Necrose Tumoral alfa/sangue
10.
J Psychopharmacol ; 33(6): 688-699, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30920339

RESUMO

BACKGROUND: Schizophrenia (SCZ) patients and relatives have deficits in early cortical sensory gating (SG) typically measured by suppression of electroencephalography-derived P50 event-related potentials (ERPs) in a conditioning-testing (S1-S2) paradigm. Associated with alpha 7 nicotinic acetylcholine receptor (α7 nAChR) dysfunction and shown to be improved with nicotine and α7 nAChR agonists, SG has recently been shown to be improved in low P50 suppressing SCZ patients following acute CDP-choline treatment. AIMS: This pilot study in healthy humans assessed the SG effects of an α7 nAChR strategy combining CDP-choline with galantamine, a positive allosteric modulator (PAM) of nAChRs, aimed at increasing and prolonging nicotinic receptor activity. METHODS: The combined effect of CDP-choline (500 mg) and galantamine (16 mg) on speech P50 gating indices rP50 (S2/S1) and dP50 (S1-S2) was examined in 30 healthy participants stratified into low and high baseline P50 suppressors in a randomized, double-blind, placebo-controlled and counterbalanced design. RESULTS: In low suppressors, CDP-choline/galantamine (vs. placebo) improved rP50 and dP50 gating, and reduced S2P50 amplitudes. No P50 gating effects were observed in high suppressors; however, CDP-choline/galantamine (vs. placebo) increased their S2P50 amplitudes. CONCLUSION: Findings from this pilot study with CDP-choline/galantamine in a healthy, SCZ-like surrogate deficient gating sample are consistent with the association of α7 nAChR mechanisms in SG impairment in SCZ and support further research trials with CDP-choline and galantamine targeting sensory processes.


Assuntos
Citidina Difosfato Colina/uso terapêutico , Galantamina/uso terapêutico , Agonistas Nicotínicos/uso terapêutico , Filtro Sensorial/efeitos dos fármacos , Fala/efeitos dos fármacos , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Adulto , Cognição/efeitos dos fármacos , Método Duplo-Cego , Potenciais Evocados/efeitos dos fármacos , Feminino , Voluntários Saudáveis , Humanos , Masculino , Nicotina/metabolismo , Nootrópicos/uso terapêutico , Fonética , Projetos Piloto , Receptores Nicotínicos/metabolismo , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo
11.
J Gerontol A Biol Sci Med Sci ; 74(7): 977-983, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-30772901

RESUMO

Daily supplementation of blueberries (BBs) reverses age-related deficits in behavior in aged rats. However, it is unknown whether BB is more beneficial to one subset of the population dependent on baseline cognitive performance and inflammatory status. To examine the effect of individual differences on the efficacy of BB, aged rats (17 months old) were assessed for cognition in the radial arm water maze (RAWM) and divided into good, average, and poor performers based on navigation errors. Half of the rats in each cognitive group were then fed a control or a 2% BB diet for 8 weeks before retesting. Serum samples were collected, pre-diet and post-diet, to assess inflammation. Latency in the radial arm water maze was significantly reduced in the BB-fed poor performers (p < .05) and preserved in the BB-fed good performers. The control-fed good performers committed more working and reference memory errors in the post-test than pretest (p < .05), whereas the BB-fed good performers showed no change. An in vitro study using the serum showed that BB supplementation attenuated lipopolysaccharide (LPS)-induced nitrite and tumor necrosis factor-alpha, and cognitive performance was associated with innate anti-inflammatory capability. Therefore, consumption of BB may reverse some age-related deficits in cognition, as well as preserve function among those with intact cognitive ability.


Assuntos
Envelhecimento , Anti-Inflamatórios , Antioxidantes , Mirtilos Azuis (Planta) , Cognição , Dietoterapia/métodos , Envelhecimento/imunologia , Envelhecimento/psicologia , Animais , Anti-Inflamatórios/imunologia , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Comportamento Animal , Cognição/efeitos dos fármacos , Cognição/fisiologia , Aprendizagem em Labirinto , Neuroimunomodulação/efeitos dos fármacos , Neuroimunomodulação/fisiologia , Plantas Medicinais , Ratos , Resultado do Tratamento , Fator de Necrose Tumoral alfa/sangue
12.
J Bacteriol ; 201(2)2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30396899

RESUMO

Members of Chlamydia are obligate intracellular bacteria that differentiate between two distinct functional and morphological forms during their developmental cycle, elementary bodies (EBs) and reticulate bodies (RBs). EBs are nondividing small electron-dense forms that infect host cells. RBs are larger noninfectious replicative forms that develop within a membrane-bound vesicle, termed an inclusion. Given the unique properties of each developmental form of this bacterium, we hypothesized that the Clp protease system plays an integral role in proteomic turnover by degrading specific proteins from one developmental form or the other. Chlamydia spp. have five uncharacterized clp genes, clpX, clpC, two clpP paralogs, and clpB In other bacteria, ClpC and ClpX are ATPases that unfold and feed proteins into the ClpP protease to be degraded, and ClpB is a deaggregase. Here, we focused on characterizing the ClpP paralogs. Transcriptional analyses and immunoblotting determined that these genes are expressed midcycle. Bioinformatic analyses of these proteins identified key residues important for activity. Overexpression of inactive clpP mutants in Chlamydia spp. suggested independent function of each ClpP paralog. To further probe these differences, we determined interactions between the ClpP proteins using bacterial two-hybrid assays and native gel analysis of recombinant proteins. Homotypic interactions of the ClpP proteins, but not heterotypic interactions between the ClpP paralogs, were detected. Interestingly, protease activity of ClpP2, but not ClpP1, was detected in vitro This activity was stimulated by antibiotics known to activate ClpP, which also blocked chlamydial growth. Our data suggest the chlamydial ClpP paralogs likely serve distinct and critical roles in this important pathogen.IMPORTANCEChlamydia trachomatis is the leading cause of preventable infectious blindness and of bacterial sexually transmitted infections worldwide. Chlamydiae are developmentally regulated obligate intracellular pathogens that alternate between two functional and morphologic forms, with distinct repertoires of proteins. We hypothesize that protein degradation is a critical aspect to the developmental cycle. A key system involved in protein turnover in bacteria is the Clp protease system. Here, we characterized the two chlamydial ClpP paralogs by examining their expression in Chlamydia spp., their ability to oligomerize, and their proteolytic activity. This work will help understand the evolutionarily diverse Clp proteases in the context of intracellular organisms, which may aid in the study of other clinically relevant intracellular bacteria.


Assuntos
Chlamydia trachomatis/enzimologia , Chlamydia trachomatis/crescimento & desenvolvimento , Endopeptidase Clp/metabolismo , Western Blotting , Linhagem Celular , Chlamydia trachomatis/genética , Biologia Computacional , Endopeptidase Clp/genética , Células Epiteliais/microbiologia , Perfilação da Expressão Gênica , Humanos , Mapeamento de Interação de Proteínas , Proteólise , Proteoma/análise , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Técnicas do Sistema de Duplo-Híbrido
13.
J Bacteriol ; 199(12)2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28396349

RESUMO

Chaperonins are essential for cellular growth under normal and stressful conditions and consequently represent one of the most conserved and ancient protein classes. The paradigm Escherichia coli chaperonin, EcGroEL, and its cochaperonin, EcGroES, assist in the folding of proteins via an ATP-dependent mechanism. In addition to the presence of groEL and groES homologs, groEL paralogs are found in many bacteria, including pathogens, and have evolved poorly understood species-specific functions. Chlamydia spp., which are obligate intracellular bacteria, have reduced genomes that nonetheless contain three groEL genes, Chlamydia groEL (ChgroEL), ChgroEL2, and ChgroEL3 We hypothesized that ChGroEL is the bona fide chaperonin and that the paralogs perform novel Chlamydia-specific functions. To test our hypothesis, we investigated the biochemical properties of ChGroEL and its cochaperonin, ChGroES, and queried the in vivo essentiality of the three ChgroEL genes through targeted mutagenesis in Chlamydia trachomatis ChGroEL hydrolyzed ATP at a rate 25% of that of EcGroEL and bound with high affinity to ChGroES, and the ChGroEL-ChGroES complex could refold malate dehydrogenase (MDH). The chlamydial ChGroEL was selective for its cognate cochaperonin, ChGroES, while EcGroEL could function with both EcGroES and ChGroES. A P35T ChGroES mutant (ChGroESP35T) reduced ChGroEL-ChGroES interactions and MDH folding activities but was tolerated by EcGroEL. Both ChGroEL-ChGroES and EcGroEL-ChGroESP35T could complement an EcGroEL-EcGroES mutant. Finally, we successfully inactivated both paralogs but not ChgroEL, leading to minor growth defects in cell culture that were not exacerbated by heat stress. Collectively, our results support novel functions for the paralogs and solidify ChGroEL as a bona fide chaperonin that is biochemically distinct from EcGroEL.IMPORTANCEChlamydia is an important cause of human diseases, including pneumonia, sexually transmitted infections, and trachoma. The chlamydial chaperonin ChGroEL and chaperonin paralog ChGroEL2 have been associated with survival under stress conditions, and ChGroEL is linked with immunopathology elicited by chlamydial infections. However, their exact roles in bacterial survival and disease remain unclear. Our results further substantiate the hypotheses that ChGroEL is the primary chlamydial chaperonin and that the paralogs play specialized roles during infection. Furthermore, ChGroEL and the mitochondrial GroEL only functioned with their cochaperonin, in contrast to the promiscuous nature of GroEL from E. coli and Helicobacter pylori, which might indicate a divergent evolution of GroEL during the transition from a free-living organism to an obligate intracellular lifestyle.


Assuntos
Chaperonina 10/genética , Chaperonina 10/metabolismo , Chaperonina 60/genética , Chaperonina 60/metabolismo , Chlamydia trachomatis/genética , Chlamydia trachomatis/metabolismo , Trifosfato de Adenosina/metabolismo , Técnicas de Inativação de Genes , Genes Essenciais , Hidrólise , Malato Desidrogenase/metabolismo , Ligação Proteica , Dobramento de Proteína
14.
Nutr Neurosci ; 20(4): 238-245, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-26618555

RESUMO

OBJECTIVES: The present study was carried out to determine if lyophilized açaí fruit pulp (genus, Euterpe), rich in polyphenols and other bioactive antioxidant and anti-inflammatory phytochemicals, is efficacious in reversing age-related cognitive deficits in aged rats. METHODS: The diets of 19-month-old Fischer 344 rats were supplemented for 8 weeks with 2% Euterpe oleracea (EO), Euterpe precatoria (EP), or a control diet. Rats were tested in the Morris water maze and then blood serum from the rats was used to assess inflammatory responses of BV-2 microglial cells. RESULTS: After 8 weeks of dietary supplementation with 2% EO or EP, rats demonstrated improved working memory in the Morris water maze, relative to controls; however, only the EO diet improved reference memory. BV-2 microglial cells treated with blood serum collected from EO-fed rats produced less nitric oxide (NO) than control-fed rats. Serum from both EO- and EP-fed rats reduced tumor necrosis factor-alpha (TNF-α). There is a relationship between performance in the water maze and the production of NO and TNF-α by serum-treated BV-2 cells, such that serum from rats with better performance was more protective against inflammatory signaling. DISCUSSION: Protection of memory during aging by supplementation of lyophilized açaí fruit pulp added to the diet may result from its ability to influence antioxidant and anti-inflammatory signaling.


Assuntos
Cognição/efeitos dos fármacos , Euterpe/química , Microglia/efeitos dos fármacos , Fitoterapia , Preparações de Plantas/farmacologia , Polifenóis/farmacologia , Animais , Antioxidantes/farmacologia , Células Cultivadas , Dieta , Suplementos Nutricionais , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Memória/efeitos dos fármacos , Microglia/citologia , Óxido Nítrico/sangue , Ratos , Ratos Endogâmicos F344 , Fator de Necrose Tumoral alfa/sangue
15.
Nutr Neurosci ; 20(2): 103-109, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25153536

RESUMO

The shift in equilibrium towards excess reactive oxygen or nitrogen species production from innate antioxidant defenses in brain is a critical factor in the declining neural function and cognitive deficit accompanying age. Previous studies from our laboratory have reported that walnuts, rich in polyphenols, antioxidants, and omega fatty acids such as alpha-linolenic acid and linoleic acid, improve the age-associated declines in cognition and neural function in rats. Possible mechanisms of action of these effects include enhancing protective signaling, altering membrane microstructures, decreasing inflammation, and preventing accumulation of polyubiquitinated protein aggregates in critical regions of the brain. In the current study, we investigated whether the serum collected from aged animals fed with walnut diets (0, 6, and 9%, w/w) would enhance protection on stressed BV-2 microglia in vitro. In the growth medium, fetal bovine serum was substituted with the serum collected from 22-month-old rats fed per protocol for 12 weeks. Walnut diet serum (6 and 9%) significantly attenuated lipopolysaccharide-induced nitrite release compared to untreated control cells and those treated with serum from rats fed 0% walnut diets. The results also indicated a significant reduction in pro-inflammatory tumor necrosis factor-alpha, cyclooxygenase-2, and inducible nitric oxide synthase. These results suggest antioxidant and anti-inflammatory protection or enhancement of membrane-associated functions in brain cells by walnut serum metabolites.


Assuntos
Envelhecimento/sangue , Encéfalo/metabolismo , Dieta , Juglans , Microglia/metabolismo , Neuroproteção , Nozes , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Encéfalo/imunologia , Linhagem Celular , Ciclo-Oxigenase 2/química , Ciclo-Oxigenase 2/metabolismo , Lipopolissacarídeos/toxicidade , Masculino , Camundongos , Microglia/efeitos dos fármacos , Microglia/imunologia , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Distribuição Aleatória , Ratos Endogâmicos F344 , Soro/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
16.
Methods Mol Biol ; 1498: 163-177, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27709575

RESUMO

Dissecting the contribution of genes to virulence in fulfillment of Molecular Koch's postulates is essential for developing prevention and treatment strategies for bacterial pathogens. This chapter will discuss the application of a targeted, intron-based insertional mutagenesis method for creating mutants in the obligate, intracellular bacterial pathogen Chlamydia trachomatis. The methods employed for intron targeting, mutant selection, and mutant verification will be outlined including available selection markers, gene targeting strategies, and potential pitfalls.


Assuntos
Chlamydia trachomatis/crescimento & desenvolvimento , Genoma Bacteriano/genética , Íntrons/genética , Proteínas de Bactérias/genética , Linhagem Celular Tumoral , Infecções por Chlamydia/virologia , Células HeLa , Humanos , Mutagênese Insercional/métodos , Virulência/genética
17.
Antioxidants (Basel) ; 5(4)2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27669317

RESUMO

Tart cherries contain an array of polyphenols that can decrease inflammation and oxidative stress (OS), which contribute to cognitive declines seen in aging populations. Previous studies have shown that polyphenols from dark-colored fruits can reduce stress-mediated signaling in BV-2 mouse microglial cells, leading to decreases in nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression. Thus, the present study sought to determine if tart cherries-which improved cognitive behavior in aged rats-would be efficacious in reducing inflammatory and OS signaling in HAPI rat microglial cells. Cells were pretreated with different concentrations (0-1.0 mg/mL) of Montmorency tart cherry powder for 1-4 h, then treated with 0 or 100 ng/mL lipopolysaccharide (LPS) overnight. LPS application increased extracellular levels of NO and tumor necrosis factor-alpha (TNF-α), and intracellular levels of iNOS and cyclooxygenase-2 (COX-2). Pretreatment with tart cherry decreased levels of NO, TNF-α, and COX-2 in a dose- and time-dependent manner versus those without pretreatment; the optimal combination was between 0.125 and 0.25 mg/mL tart cherry for 2 h. Higher concentrations of tart cherry powder and longer exposure times negatively affected cell viability. Therefore, tart cherries (like other dark-colored fruits), may be effective in reducing inflammatory and OS-mediated signals.

18.
J Psychopharmacol ; 30(1): 56-62, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26537155

RESUMO

While nicotine is often associated with the neuropsychological effects of tobacco smoke, the robust monoamine oxidase (MAO) inhibition observed in chronic smokers is also likely to play a role. Electroencephalographically-indexed alterations in baseline neural oscillations by nicotine have previously been reported in both smokers and non-smokers, however, little is known about the effects of MAO inhibition in combination with nicotine on resting state EEG. In a sample of 24 healthy non-smoking males, the effects of 6 mg nicotine gum, as well as MAO-A inhibition via 75 mg moclobemide, were investigated in separate and combined conditions over four separate test sessions. Drug effects were observed in the alpha2, beta2, and theta band frequencies. Nicotine increased alpha2 power, and moclobemide decreased beta2 power. Theta power was decreased most robustly by the combination of both drugs. Therefore, this study demonstrated that the nicotinic and MAO inhibiting properties of tobacco may differentially influence fast-wave oscillations (alpha2 and beta2), while acting in synergy to influence theta oscillations.


Assuntos
Moclobemida/farmacologia , Inibidores da Monoaminoxidase/farmacologia , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Estudos Cross-Over , Método Duplo-Cego , Interações Medicamentosas , Sinergismo Farmacológico , Eletroencefalografia , Humanos , Masculino , Moclobemida/administração & dosagem , Inibidores da Monoaminoxidase/administração & dosagem , Nicotina/administração & dosagem , Agonistas Nicotínicos/administração & dosagem , Dispositivos para o Abandono do Uso de Tabaco
19.
PLoS Pathog ; 11(8): e1005125, 2015 08.
Artigo em Inglês | MEDLINE | ID: mdl-26313645

RESUMO

Chlamydia trachomatis is an obligate intracellular human pathogen that exhibits stage-specific gene transcription throughout a biphasic developmental cycle. The mechanisms that control modulation in transcription and associated phenotypic changes are poorly understood. This study provides evidence that a switch-protein kinase regulatory network controls availability of σ66, the main sigma subunit for transcription in Chlamydia. In vitro analysis revealed that a putative switch-protein kinase regulator, RsbW, is capable of interacting directly with σ66, as well as phosphorylating its own antagonist, RsbV1, rendering it inactive. Conversely, the putative PP2C-like phosphatase domain of chlamydial RsbU was capable of reverting RsbV1 into its active state. Recent advances in genetic manipulation of Chlamydia were employed to inactivate rsbV1, as well as to increase the expression levels of rsbW or rsbV1, in vivo. Representative σ66-dependent gene transcription was repressed in the absence of rsbV1 or upon increased expression of RsbW, and increased upon elevated expression of RsbV1. These effects on housekeeping transcription were also correlated to several measures of growth and development. A model is proposed where the relative levels of active antagonist (RsbV1) and switch-protein anti-sigma factor (RsbW) control the availability of σ66 and subsequently act as a molecular 'throttle' for Chlamydia growth and development.


Assuntos
Proteínas de Bactérias/fisiologia , Chlamydia trachomatis/fisiologia , Fator sigma/fisiologia , Trifosfato de Adenosina/metabolismo , Proteínas de Transporte/fisiologia , Chlamydia trachomatis/genética , Células HeLa , Humanos , Cinética , Fosforilação , Transcrição Gênica
20.
Pharmacol Biochem Behav ; 136: 73-81, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26188167

RESUMO

Chronic cannabis use may interact with factors, such as age of onset of cannabis use, family history, and genetic factors, to elicit schizophrenia (SZ)-like symptoms, including sensory and cognitive deficits. However, evidence of a relationship between cannabis use and cognitive impairment is confounded by concomitant use of tobacco. The objective of this study was to compare tobacco-naïve cannabis users with individuals without a history of tobacco/cannabis use on the auditory mismatch negativity (MMN) event-related potential (ERP), a neural measure of auditory deviance detection which is diminished in SZ. An exploratory arm of the study, conducted within a randomized, double-blind, placebo controlled design, examined the acute effects of nicotine gum (6mg) on MMN in cannabis users. MMN was recorded in response to 5 deviant stimuli within an optimal MMN paradigm in 44 healthy, non-tobacco smoking volunteers aged 18-26. Cannabis users (n=21) started smoking cannabis prior to age 17, at least 1 joint per month. To examine the effects of chronicity, users were grouped into relatively heavy long-term (HLT; n=11) users and light short-term (LST; n=10) users. Impaired deviance detection was shown in cannabis users vs. nonusers as reflected by a smaller MMN to duration deviants. Chronicity of use was also associated with MMN alterations, as HLTs displayed a reduced duration and gap MMN vs. LSTs. Compared with placebo, nicotine treatment enhanced select MMN deviants in cannabis user subgroups. As deficits associated with early and persistent cannabis use are similar to those seen in SZ, these dose-dependant disturbances in early sensory processing with cannabis use may be one cognitive pathway which mediates an increased risk for SZ in vulnerable youth, and be influenced by concurrent cigarette smoking behavior.


Assuntos
Transtornos da Percepção Auditiva/fisiopatologia , Abuso de Maconha/fisiopatologia , Nicotina/administração & dosagem , Nicotina/efeitos adversos , Estimulação Acústica , Adolescente , Adulto , Transtornos da Percepção Auditiva/induzido quimicamente , Transtornos da Percepção Auditiva/complicações , Estudos de Casos e Controles , Método Duplo-Cego , Potenciais Evocados Auditivos/efeitos dos fármacos , Potenciais Evocados Auditivos/fisiologia , Feminino , Humanos , Masculino , Abuso de Maconha/complicações , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA