Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 56(43): 13431-13435, 2017 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-28795520

RESUMO

We herein showcase the ability of NHC-coordinated dinuclear NiI -NiI complexes to override fundamental reactivity limits of mononuclear (NHC)Ni0 catalysts in cross-couplings. This is demonstrated with the development of a chemoselective trifluoromethylselenolation of aryl iodides catalyzed by a NiI dimer. A novel SeCF3 -bridged NiI dimer was isolated and shown to selectively react with Ar-I bonds. Our computational and experimental reactivity data suggest dinuclear NiI catalysis to be operative. The corresponding Ni0 species, on the other hand, suffers from preferred reaction with the product, ArSeCF3 , over productive cross-coupling and is hence inactive.

2.
J Am Soc Mass Spectrom ; 28(9): 1855-1862, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28484973

RESUMO

Collision cross-section (CCS) measurements obtained from ion mobility spectrometry-mass spectrometry (IMS-MS) analyses often provide useful information concerning a protein's size and shape and can be complemented by modeling procedures. However, there have been some concerns about the extent to which certain proteins maintain a native-like conformation during the gas-phase analysis, especially proteins with dynamic or extended regions. Here we have measured the CCSs of a range of biomolecules including non-globular proteins and RNAs of different sequence, size, and stability. Using traveling wave IMS-MS, we show that for the proteins studied, the measured CCS deviates significantly from predicted CCS values based upon currently available structures. The results presented indicate that these proteins collapse to different extents varying on their elongated structures upon transition into the gas-phase. Comparing two RNAs of similar mass but different solution structures, we show that these biomolecules may also be susceptible to gas-phase compaction. Together, the results suggest that caution is needed when predicting structural models based on CCS data for RNAs as well as proteins with non-globular folds. Graphical Abstract ᅟ.


Assuntos
Espectrometria de Mobilidade Iônica/métodos , Proteínas/química , RNA/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Gases/química
3.
J Virol ; 88(5): 2584-99, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24352439

RESUMO

UNLABELLED: Hepatitis B virus (HBV) is a major human pathogen that causes serious liver disease and 600,000 deaths annually. Approved therapies for treating chronic HBV infections usually target the multifunctional viral polymerase (hPOL). Unfortunately, these therapies--broad-spectrum antivirals--are not general cures, have side effects, and cause viral resistance. While hPOL remains an attractive therapeutic target, it is notoriously difficult to express and purify in a soluble form at yields appropriate for structural studies. Thus, no empirical structural data exist for hPOL, and this impedes medicinal chemistry and rational lead discovery efforts targeting HBV. Here, we present an efficient strategy to overexpress recombinant hPOL domains in Escherichia coli, purifying them at high yield and solving their known aggregation tendencies. This allowed us to perform the first structural and biophysical characterizations of hPOL domains. Apo-hPOL domains adopt mainly α-helical structures with small amounts of ß-sheet structures. Our recombinant material exhibited metal-dependent, reverse transcriptase activity in vitro, with metal binding modulating the hPOL structure. Calcomine orange 2RS, a small molecule that inhibits duck HBV POL activity, also inhibited the in vitro priming activity of recombinant hPOL. Our work paves the way for structural and biophysical characterizations of hPOL and should facilitate high-throughput lead discovery for HBV. IMPORTANCE: The viral polymerase from human hepatitis B virus (hPOL) is a well-validated therapeutic target. However, recombinant hPOL has a well-deserved reputation for being extremely difficult to express in a soluble, active form in yields appropriate to the structural studies that usually play an important role in drug discovery programs. This has hindered the development of much-needed new antivirals for HBV. However, we have solved this problem and report here procedures for expressing recombinant hPOL domains in Escherichia coli and also methods for purifying them in soluble forms that have activity in vitro. We also present the first structural and biophysical characterizations of hPOL. Our work paves the way for new insights into hPOL structure and function, which should assist the discovery of novel antivirals for HBV.


Assuntos
Produtos do Gene pol/biossíntese , Produtos do Gene pol/química , Vírus da Hepatite B/enzimologia , Algoritmos , Dicroísmo Circular , Produtos do Gene pol/isolamento & purificação , Vírus da Hepatite B/genética , Humanos , Espectrometria de Massas , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo
4.
J Org Chem ; 78(13): 6599-608, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23735035

RESUMO

The room-temperature hydrophosphinylation of unactivated monosubstituted alkenes using phosphinates (ROP(O)H2) and catalytic NiCl2 in the presence of dppe is described. The method is competitive with prior palladium-catalyzed reactions and uses a much cheaper catalyst and simple conditions. The scope of the reaction is quite broad in terms of unactivated terminal olefins, proceeds at room temperature, often avoids chromatographic purification, and allows one-pot conversion to various organophosphorus compounds.


Assuntos
Alcenos/química , Níquel/química , Compostos Organofosforados/síntese química , Catálise , Estrutura Molecular , Compostos Organofosforados/química , Ácidos Fosfínicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA