Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Respir Physiol Neurobiol ; 273: 103335, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31707007

RESUMO

Tidal volume VT required for mouth-to-mouth (MTM) and bag-valve-mask (BVM) rescue ventilation remains debatable owing to differences in physiology and end-point objectives. Analysis of gas transport may clarify minimum necessary VT and its determinants. Alveolar and arterial O2 and CO2 responses to MTM and air BVM ventilation for VT between 0.4 and 1.2 liters were computed using a model of gas exchange that incorporates inspired gas concentrations, airway dead space, cardiac output, pulmonary shunt, blood gas dissociation curves, tissue compartments, and metabolic rate. Parameters were adjusted to match published human data. Steady state arterial oxygen saturation reached plateaus at VT above 0.7 liters with MTM and 0.6 liters with air ventilation at 12 breaths per minute. Increasing shunt shifted oxygenation plateaus downward, but larger tidal volumes did not improve oxygen saturation. Carbon dioxide retention occurred at VT below 2.3 liters for MTM ventilation and 0.6 liters for air ventilation. Results establish a physiological foundation for tidal volume requirements during resuscitation.


Assuntos
Dióxido de Carbono/metabolismo , Reanimação Cardiopulmonar/normas , Hipóxia/metabolismo , Modelos Biológicos , Oxigênio/metabolismo , Troca Gasosa Pulmonar/fisiologia , Respiração Artificial/normas , Fenômenos Fisiológicos Respiratórios , Afogamento/metabolismo , Afogamento/prevenção & controle , Humanos , Hipóxia/terapia , Volume de Ventilação Pulmonar/fisiologia
2.
Respir Physiol Neurobiol ; 165(2-3): 221-8, 2009 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-19136079

RESUMO

Lung compression during breath-hold diving reduces gas exchanging surface area. Beyond a critical depth, collapse of all alveoli should result in total pulmonary shunt and a drop in arterial oxygen partial pressure toward the mixed-venous level. The effect of lung collapse on human breath-hold diving capability is analysed using a computational model of the lungs and circulation that simulates oxygen, carbon dioxide, and nitrogen exchange between alveoli, blood, and tissues. Gas uptake during descent becomes limited by lung compression when the ratio of diffusing capacity to the product of perfusion and gas solubility in blood drops below one. An equation is derived for estimating collapse depth due to direct alveolar compression and time-dependent absorption atelectasis. Oxygen dissolved in blood during descent builds a limited capacitive store for supporting metabolism during the period of lung collapse. Hypoxemia with loss of consciousness prior to alveolar re-opening on ascent is predicted to occur on dives beyond 300 m, depending on initial lung volume.


Assuntos
Mergulho/fisiologia , Modelos Biológicos , Circulação Pulmonar/fisiologia , Troca Gasosa Pulmonar/fisiologia , Capacidade Pulmonar Total/fisiologia , Apneia/fisiopatologia , Dióxido de Carbono/metabolismo , Difusão , Humanos , Medidas de Volume Pulmonar , Modelos Cardiovasculares , Oxigênio/metabolismo , Alvéolos Pulmonares/irrigação sanguínea , Alvéolos Pulmonares/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA