Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Nat Prod ; 86(4): 782-790, 2023 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-36847642

RESUMO

Emerging fungal infections require new, more efficient antifungal agents and therapies. AFP, a protein from Aspergillus giganteus with four disulfide bonds, is a promising candidate because it selectively inhibits the growth of filamentous fungi. In this work, the reduced form of AFP was prepared using native chemical ligation. The native protein was synthesized via oxidative folding with uniform protection for cysteine thiols. AFP's biological activity depends heavily on the pattern of natural disulfide bonds. Enzymatic digestion and MS analysis provide proof for interlocking disulfide topology (abcdabcd) that was previously assumed. With this knowledge, a semi-orthogonal thiol protection method was designed. By following this strategy, out of a possible 105, only 6 disulfide isomers formed and 1 of them proved to be identical with the native protein. This approach allows the synthesis of analogs for examining structure-activity relationships and, thus, preparing AFP variants with higher antifungal activity.


Assuntos
Antifúngicos , Proteínas Fúngicas , Antifúngicos/química , Proteínas Fúngicas/metabolismo , alfa-Fetoproteínas , Dissulfetos
2.
Int J Biol Macromol ; 129: 511-522, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30738898

RESUMO

Small, cysteine-rich and cationic antifungal proteins from natural sources are promising candidates for the development of novel treatment strategies to prevent and combat infections caused by drug-resistant fungi. However, limited information about their structure and antifungal mechanism hampers their future applications. In the present study, we determined the solution structure, dynamics and associated solvent areas of the Neosartorya (Aspergillus) fischeri antifungal protein NFAP. Genome mining within the genus revealed the presence of orthologous genes in N. fischeri and Neosartorya spathulata, and genes encoding closely related proteins can be found in Penicillium brasiliensis and Penicillium oxalicum. We show that the tertiary structure of these putative proteins can be resolved using the structure of NFAP as reliable template for in silico prediction. Localization studies with fluorescence-labelled protein pointed at an energy-dependent uptake mechanism of NFAP in the sensitive model fungus Neurospora crassa and subsequent cytoplasmic localization coincided with cell-death induction. The presented results contribute to a better understanding of the structure/function relationship of NFAP and related proteins and pave the way towards future antifungal drug development.


Assuntos
Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Neosartorya/química , Filogenia , Sequência de Aminoácidos , Citoplasma/metabolismo , Modelos Moleculares , Neosartorya/citologia , Conformação Proteica , Transporte Proteico , Homologia de Sequência de Aminoácidos , Soluções
3.
PLoS One ; 13(10): e0204825, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30321182

RESUMO

Calcium ions (Ca2+) play an important role in the toxicity of the cysteine-rich and cationic antifungal protein PAF from Penicillium chrysogenum: high extracellular Ca2+ levels reduce the toxicity of PAF in the sensitive model fungus Neurospora crassa in a concentration dependent way. However, little is known about the mechanistic details of the Ca2+ ion impact and the Ca2+ binding capabilities of PAF outside the fungal cell, which might be the reason for the activity loss. Using nuclear magnetic resonance (NMR), isothermal titration calorimetry and molecular dynamics (MD) simulations we demonstrated that PAF weakly, but specifically binds Ca2+ ions. MD simulations of PAF predicted one major Ca2+ binding site at the C-terminus involving Asp53 and Asp55, while Asp19 was considered as putative Ca2+ binding site. The exchange of Asp19 to serine had little impact on the Ca2+ binding, however caused the loss of antifungal activity, as was shown in our recent study. Now we replaced the C-terminal aspartates and expressed the serine variant PAFD53S/D55S. The specific Ca2+ binding affinity of PAFD53S/D55S decreased significantly if compared to PAF, whereas the antifungal activity was retained. To understand more details of Ca2+ interactions, we investigated the NMR and MD structure/dynamics of the free and Ca2+-bound PAF and PAFD53S/D55S. Though we found some differences between these protein variants and the Ca2+ complexes, these effects cannot explain the observed Ca2+ influence. In conclusion, PAF binds Ca2+ ions selectively at the C-terminus; however, this Ca2+ binding does not seem to play a direct role in the previously documented modulation of the antifungal activity of PAF.


Assuntos
Cálcio/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Penicillium chrysogenum/crescimento & desenvolvimento , Sítios de Ligação , Calorimetria , Proteínas Fúngicas/genética , Proteínas Fúngicas/toxicidade , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutação , Neurospora crassa/efeitos dos fármacos , Penicillium chrysogenum/metabolismo , Ligação Proteica
4.
Sci Rep ; 8(1): 1751, 2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29379111

RESUMO

Small, cysteine-rich and cationic proteins with antimicrobial activity are produced by diverse organisms of all kingdoms and represent promising molecules for drug development. The ancestor of all industrial penicillin producing strains, the ascomycete Penicillium chryosgenum Q176, secretes the extensively studied antifungal protein PAF. However, the genome of this strain harbours at least two more genes that code for other small, cysteine-rich and cationic proteins with potential antifungal activity. In this study, we characterized the pafB gene product that shows high similarity to PgAFP from P. chrysogenum R42C. Although abundant and timely regulated pafB gene transcripts were detected, we could not identify PAFB in the culture broth of P. chrysogenum Q176. Therefore, we applied a P. chrysogenum-based expression system to produce sufficient amounts of recombinant PAFB to address unanswered questions concerning the structure and antimicrobial function. Nuclear magnetic resonance (NMR)-based analyses revealed a compact ß-folded structure, comprising five ß-strands connected by four solvent exposed and flexible loops and an "abcabc" disulphide bond pattern. We identified PAFB as an inhibitor of growth of human pathogenic moulds and yeasts. Furthermore, we document for the first time an anti-viral activity for two members of the small, cysteine-rich and cationic protein group from ascomycetes.


Assuntos
Antibacterianos/química , Cisteína/química , Penicillium chrysogenum/química , Antifúngicos/química , Cátions/química , Proteínas Fúngicas/química , Penicilinas/química
5.
PLoS One ; 12(1): e0169920, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28072824

RESUMO

The cysteine-rich, cationic, antifungal protein PAF is abundantly secreted into the culture supernatant of the filamentous Ascomycete Penicillium chrysogenum. The five ß-strands of PAF form a compact ß-barrel that is stabilized by three disulphide bonds. The folding of PAF allows the formation of four surface-exposed loops and distinct charged motifs on the protein surface that might regulate the interaction of PAF with the sensitive target fungus. The growth inhibitory activity of this highly stable protein against opportunistic fungal pathogens provides great potential in antifungal drug research. To understand its mode of action, we started to investigate the surface-exposed loops of PAF and replaced one aspartic acid at position 19 in loop 2 that is potentially involved in PAF active or binding site, with a serine (Asp19 to Ser19). We analysed the overall effects, such as unfolding, electrostatic changes, sporadic conformers and antifungal activity when substituting this specific amino acid to the fairly indifferent amino acid serine. Structural analyses revealed that the overall 3D solution structure is virtually identical with that of PAF. However, PAFD19S showed slightly increased dynamics and significant differences in the surface charge distribution. Thermal unfolding identified PAFD19S to be rather a two-state folder in contrast to the three-state folder PAF. Functional comparison of PAFD19S and PAF revealed that the exchange at residue 19 caused a dramatic loss of antifungal activity: the binding and internalization of PAFD19S by target cells was reduced and the protein failed to trigger an intracellular Ca2+ response, all of which are closely linked to the antifungal toxicity of PAF. We conclude that the negatively charged residue Asp19 in loop 2 is essential for full function of the cationic protein PAF.


Assuntos
Antifúngicos/química , Proteínas Fúngicas/química , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto , Desnaturação Proteica , Motivos de Aminoácidos , Antifúngicos/toxicidade , Sítios de Ligação , Cálcio/metabolismo , Cisteína/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/toxicidade , Penicillium chrysogenum/genética , Penicillium chrysogenum/metabolismo , Ligação Proteica
6.
Microb Cell Fact ; 15(1): 192, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27835989

RESUMO

BACKGROUND: Small, cysteine-rich and cationic antifungal proteins (APs) from filamentous ascomycetes, such as NFAP from Neosartorya fischeri and PAF from Penicillium chrysogenum, are promising candidates for novel drug development. A prerequisite for their application is a detailed knowledge about their structure-function relation and mode of action, which would allow protein modelling to enhance their toxicity and specificity. Technologies for structure analyses, such as electronic circular dichroism (ECD) or NMR spectroscopy, require highly purified samples and in case of NMR milligrams of uniformly 15N-/13C-isotope labelled protein. To meet these requirements, we developed a P. chrysogenum-based expression system that ensures sufficient amount and optimal purity of APs for structural and functional analyses. RESULTS: The APs PAF, PAF mutants and NFAP were expressed in a P. chrysogenum ∆paf mutant strain that served as perfect microbial expression factory. This strain lacks the paf-gene coding for the endogenous antifungal PAF and is resistant towards several APs from other ascomycetes. The expression of the recombinant proteins was under the regulation of the strong paf promoter, and the presence of a paf-specific pre-pro sequence warranted the secretion of processed proteins into the supernatant. The use of defined minimal medium allowed a single-step purification of the recombinant proteins. The expression system could be extended to express PAF in the related fungus Penicillium digitatum, which does not produce detectable amounts of APs, demonstrating the versatility of the approach. The molecular masses, folded structures and antifungal activity of the recombinant proteins were analysed by ESI-MS, ECD and NMR spectroscopy and growth inhibition assays. CONCLUSION: This study demonstrates the implementation of a paf promoter driven expression cassettes for the production of cysteine-rich, cationic, APs in different Penicillium species. The system is a perfect tool for the generation of correctly folded proteins with high quality for structure-function analyses.


Assuntos
Peptídeos Catiônicos Antimicrobianos/biossíntese , Cisteína/metabolismo , Penicillium chrysogenum/metabolismo , Peptídeos Catiônicos Antimicrobianos/química , Dicroísmo Circular/métodos , Cisteína/química , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/genética , Espectroscopia de Ressonância Magnética/métodos , Mutagênese Sítio-Dirigida , Penicillium chrysogenum/genética
7.
FEBS Lett ; 589(11): 1266-71, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25882631

RESUMO

The Penicillium chrysogenum antifungal protein PAF is toxic against potentially pathogenic Ascomycetes. We used the highly sensitive aequorin-expressing model Aspergillus niger to identify a defined change in cytoplasmic free Ca(2+) dynamics in response to PAF. This Ca(2+) signature depended on an intact positively charged lysine-rich PAF motif. By combining Ca(2+) measurements in A. niger mutants with deregulated cAMP/protein kinase A (PKA) signaling, we proved the interconnection of Ca(2+) perturbation and cAMP/PKA signaling in the mechanistic function of PAF. A deep understanding of the mode of action of PAF is an invaluable prerequisite for its future application as new antifungal drug.


Assuntos
Antifúngicos/farmacologia , Aspergillus niger/enzimologia , Sinalização do Cálcio/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Fúngicas/farmacologia , Motivos de Aminoácidos , Antifúngicos/química , Proteínas Fúngicas/química
8.
Chemistry ; 19(38): 12684-92, 2013 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-24175344

RESUMO

The folding of disulfide proteins is of considerable interest because knowledge of this may influence our present understanding of protein folding. However, sometimes even the disulfide pattern cannot be unequivocally determined by the available experimental techniques. For example, the structures of a few small antifungal proteins (PAF, AFP) have been disclosed recently using NMR spectroscopy but with some ambiguity in the actual disulfide pattern. For this reason, we carried out the chemical synthesis of PAF. Probing different approaches, the oxidative folding of the synthetic linear PAF yielded a folded protein that has identical structure and antifungal activity as the native PAF. In contrast, unfolded linear PAF was inactive, a result that may have implications concerning its redox state in the mode of action.


Assuntos
Antifúngicos/síntese química , Proteínas Fúngicas/síntese química , Penicillium chrysogenum/metabolismo , Sequência de Aminoácidos , Antifúngicos/química , Cisteína/química , Dissulfetos/química , Proteínas Fúngicas/química , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Oxirredução , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA