Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO Mol Med ; 13(3): e12005, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33587337

RESUMO

Neovascularization contributes to multiple visual disorders including age-related macular degeneration (AMD) and retinopathy of prematurity. Current therapies for treating ocular angiogenesis are centered on the inhibition of vascular endothelial growth factor (VEGF). While clinically effective, some AMD patients are refractory or develop resistance to anti-VEGF therapies and concerns of increased risks of developing geographic atrophy following long-term treatment have been raised. Identification of alternative pathways to inhibit pathological angiogenesis is thus important. We have identified a novel inhibitor of angiogenesis, COCO, a member of the Cerberus-related DAN protein family. We demonstrate that COCO inhibits sprouting, migration and cellular proliferation of cultured endothelial cells. Intravitreal injections of COCO inhibited retinal vascularization during development and in models of retinopathy of prematurity. COCO equally abrogated angiogenesis in models of choroidal neovascularization. Mechanistically, COCO inhibited TGFß and BMP pathways and altered energy metabolism and redox balance of endothelial cells. Together, these data show that COCO is an inhibitor of retinal and choroidal angiogenesis, possibly representing a therapeutic option for the treatment of neovascular ocular diseases.


Assuntos
Neovascularização de Coroide , Cocos , Neovascularização de Coroide/tratamento farmacológico , Células Endoteliais , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Retina , Fator A de Crescimento do Endotélio Vascular
2.
NPJ Precis Oncol ; 4: 1, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31934644

RESUMO

Glioblastoma multiforme (GBM) is an incurable primary brain tumor containing a sub-population of cancer stem cells (CSCs). Polycomb Repressive Complex (PRC) proteins BMI1 and EZH2 are enriched in CSCs, promoting clonogenic growth and resistance to genotoxic therapies. We report here that when used at appropriate concentrations, pharmaceutical inhibitors of BMI1 could efficiently prevent GBM colony growth and CSC self-renewal in vitro and significantly extend lifespan in terminally ill tumor-bearing mice. Notably, molecular analyses revealed that the commonly used PTC596 molecule targeted both BMI1 and EZH2, possibly providing beneficial therapeutic effects in some contexts. On the other hand, treatment with PTC596 resulted in instant reactivation of EZH2 target genes and induction of a molecular program of epithelial-mesenchymal transition (EMT), possibly explaining the modified phenotype of some PTC596-treated tumors. Treatment with a related but more specific BMI1 inhibitor resulted in tumor regression and maintenance of cell identity. We conclude that inhibition of BMI1 alone is efficient at inducing GBM regression, and that dual inhibition of BMI1 and EZH2 using PTC596 may be also beneficial but only in specific contexts.

3.
Cell Rep ; 23(9): 2653-2666, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29847796

RESUMO

Late-onset sporadic Alzheimer's disease (AD) is the most prevalent form of dementia, but its origin remains poorly understood. The Bmi1/Ring1 protein complex maintains transcriptional repression of developmental genes through histone H2A mono-ubiquitination, and Bmi1 deficiency in mice results in growth retardation, progeria, and neurodegeneration. Here, we demonstrate that BMI1 is silenced in AD brains, but not in those with early-onset familial AD, frontotemporal dementia, or Lewy body dementia. BMI1 expression was also reduced in cortical neurons from AD patient-derived induced pluripotent stem cells but not in neurons overexpressing mutant APP and PSEN1. BMI1 knockout in human post-mitotic neurons resulted in amyloid beta peptide secretion and deposition, p-Tau accumulation, and neurodegeneration. Mechanistically, BMI1 was required to repress microtubule associated protein tau (MAPT) transcription and prevent GSK3beta and p53 stabilization, which otherwise resulted in neurodegeneration. Restoration of BMI1 activity through genetic or pharmaceutical approaches could represent a therapeutic strategy against AD.


Assuntos
Doença de Alzheimer/patologia , Modelos Biológicos , Complexo Repressor Polycomb 1/deficiência , Idade de Início , Doença de Alzheimer/genética , Amiloide/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Demência/metabolismo , Demência/patologia , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurônios/metabolismo , Fosforilação , Complexo Repressor Polycomb 1/genética , Complexo Repressor Polycomb 1/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Proteínas tau/metabolismo
4.
Development ; 143(9): 1571-84, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26965367

RESUMO

Retinal development occurs through the sequential but overlapping generation of six types of neuronal cells and one glial cell type. Of these, rod and cone photoreceptors represent the functional unit of light detection and phototransduction and are frequently affected in retinal degenerative diseases. During mouse development, the Polycomb group protein Bmi1 is expressed in immature retinal progenitors and differentiated retinal neurons, including cones. We show here that Bmi1 is required to prevent post natal degeneration of cone photoreceptors and bipolar neurons and that inactivation of Chk2 or p53 could improve but not overcome cone degeneration in Bmi1(-/-) mice. The retinal phenotype of Bmi1(-/-) mice was also characterized by loss of heterochromatin, activation of tandem repeats, oxidative stress and Rip3-associated necroptosis. In the human retina, BMI1 was preferentially expressed in cones at heterochromatic foci. BMI1 inactivation in human embryonic stem cells was compatible with retinal induction but impaired cone terminal differentiation. Despite this developmental arrest, BMI1-deficient cones recapitulated several anomalies observed in Bmi1(-/-) photoreceptors, such as loss of heterochromatin, activation of tandem repeats and induction of p53, revealing partly conserved biological functions between mouse and man.


Assuntos
Células-Tronco Embrionárias/citologia , Necrose/genética , Complexo Repressor Polycomb 1/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Células Fotorreceptoras Retinianas Cones/citologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Animais , Linhagem Celular , Quinase do Ponto de Checagem 2/genética , Heterocromatina/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Estresse Oxidativo , Complexo Repressor Polycomb 1/genética , Proteínas Proto-Oncogênicas/genética , Proteína Serina-Treonina Quinases de Interação com Receptores , Retina/embriologia , Células Fotorreceptoras Retinianas Bastonetes/citologia , Proteína Supressora de Tumor p53/genética
5.
J Biol Chem ; 291(1): 182-97, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26468281

RESUMO

The polycomb repressive complex 1 (PRC1), containing the core BMI1 and RING1A/B proteins, mono-ubiquitinylates histone H2A (H2A(ub)) and is associated with silenced developmental genes at facultative heterochromatin. It is, however, assumed that the PRC1 is excluded from constitutive heterochromatin in somatic cells based on work performed on mouse embryonic stem cells and oocytes. We show here that BMI1 is required for constitutive heterochromatin formation and silencing in human and mouse somatic cells. BMI1 was highly enriched at intergenic and pericentric heterochromatin, co-immunoprecipitated with the architectural heterochromatin proteins HP1, DEK1, and ATRx, and was required for their localization. In contrast, BRCA1 localization was BMI1-independent and partially redundant with that of BMI1 for H2A(ub) deposition, constitutive heterochromatin formation, and silencing. These observations suggest a dynamic and developmentally regulated model of PRC1 occupancy at constitutive heterochromatin, and where BMI1 function in somatic cells is to stabilize the repetitive genome.


Assuntos
Inativação Gênica , Heterocromatina/metabolismo , Mamíferos/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Proteína BRCA1/metabolismo , Córtex Cerebral/citologia , Técnicas de Silenciamento de Genes , Histonas/metabolismo , Humanos , Camundongos , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Membrana Nuclear/metabolismo , Complexo Repressor Polycomb 1/deficiência , Proteínas Proto-Oncogênicas/deficiência , Sequências Repetitivas de Ácido Nucleico/genética , Ubiquitina/metabolismo
6.
Development ; 142(19): 3294-306, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26443633

RESUMO

Cone photoreceptors are required for color discrimination and high-resolution central vision and are lost in macular degenerations, cone and cone/rod dystrophies. Cone transplantation could represent a therapeutic solution. However, an abundant source of human cones remains difficult to obtain. Work performed in model organisms suggests that anterior neural cell fate is induced 'by default' if BMP, TGFß and Wnt activities are blocked, and that photoreceptor genesis operates through an S-cone default pathway. We report here that Coco (Dand5), a member of the Cerberus gene family, is expressed in the developing and adult mouse retina. Upon exposure to recombinant COCO, human embryonic stem cells (hESCs) differentiated into S-cone photoreceptors, developed an inner segment-like protrusion, and could degrade cGMP when exposed to light. Addition of thyroid hormone resulted in a transition from a unique S-cone population toward a mixed M/S-cone population. When cultured at confluence for a prolonged period of time, COCO-exposed hESCs spontaneously developed into a cellular sheet composed of polarized cone photoreceptors. COCO showed dose-dependent and synergistic activity with IGF1 at blocking BMP/TGFß/Wnt signaling, while its cone-inducing activity was blocked in a dose-dependent manner by exposure to BMP, TGFß or Wnt-related proteins. Our work thus provides a unique platform to produce human cones for developmental, biochemical and therapeutic studies and supports the hypothesis that photoreceptor differentiation operates through an S-cone default pathway during human retinal development.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Retina/embriologia , Células Fotorreceptoras Retinianas Cones/fisiologia , Transdução de Sinais/efeitos dos fármacos , Análise de Variância , Animais , Western Blotting , Proteínas Morfogenéticas Ósseas/metabolismo , Linhagem Celular , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Retina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Crescimento Transformador beta/metabolismo , Proteínas Wnt/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA