Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
mBio ; 13(1): e0007522, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35189698

RESUMO

Electronic cigarettes (e-cigs) have become prevalent as an alternative to conventional cigarette smoking, particularly in youth. E-cig aerosols contain unique chemicals which alter the oral microbiome and promote dysbiosis in ways we are just beginning to investigate. We conducted a 6-month longitudinal study involving 84 subjects who were either e-cig users, conventional smokers, or nonsmokers. Periodontal condition, cytokine levels, and subgingival microbial community composition were assessed, with periodontal, clinical, and cytokine measures reflecting cohort habit and positively correlating with pathogenic taxa (e.g., Treponema, Saccharibacteria, and Porphyromonas). α-Diversity increased similarly across cohorts longitudinally, yet each cohort maintained a unique microbiome. The e-cig microbiome shared many characteristics with the microbiome of conventional smokers and some with nonsmokers, yet it maintained a unique subgingival microbial community enriched in Fusobacterium and Bacteroidales (G-2). Our data suggest that e-cig use promotes a unique periodontal microbiome, existing as a stable heterogeneous state between those of conventional smokers and nonsmokers and presenting unique oral health challenges. IMPORTANCE Electronic cigarette (e-cig) use is gaining in popularity and is often perceived as a healthier alternative to conventional smoking. Yet there is little evidence of the effects of long-term use of e-cigs on oral health. Conventional cigarette smoking is a prominent risk factor for the development of periodontitis, an oral disease affecting nearly half of adults over 30 years of age in the United States. Periodontitis is initiated through a disturbance in the microbial biofilm communities inhabiting the unique space between teeth and gingival tissues. This disturbance instigates host inflammatory and immune responses and, if left untreated, leads to tooth and bone loss and systemic diseases. We found that the e-cig user's periodontal microbiome is unique, eliciting unique host responses. Yet some similarities to the microbiomes of both conventional smokers and nonsmokers exist, with strikingly more in common with that of cigarette smokers, suggesting that there is a unique periodontal risk associated with e-cig use.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Microbiota , Periodonto , Vaping , Adulto , Citocinas , Humanos , Estudos Longitudinais , Periodontite , Periodonto/microbiologia
2.
Artigo em Inglês | MEDLINE | ID: mdl-31737576

RESUMO

Malignant fungating wounds present in 5-14% of advanced cancer patients in the United States and are a result of cancerous cells infiltrating and proliferating in the skin. Presentation of malignant fungating wounds often occurs in the last 6 months of life and therefore become symbols of impending death for patients and their families. Due to the incurable and severe nature of these wounds, patients require palliative care until death to minimize pain and suffering. Symptoms associated with these chronic wounds include malodor, pain, bleeding, necrosis, large amounts of exudate, increased microbial growth, and more. Limited research using culture-based techniques has been conducted on malignant fungating wounds and therefore no optimal approach to treating these wounds has been established. Despite limited data, associations between the cutaneous microbiome of these wounds and severity of symptoms have been made. The presence of at least one strain of obligate anaerobic bacteria is linked with severe odor and exudate. A concentration of over 105/g bacteria is linked with increased pain and exudate. Bacterial metabolites such as DMTS and putrescine are linked with components of malignant fungating wound odor and degradation of periwound skin. The few but significant associations made between the malignant fungating wound microbiome and severity of symptoms indicate that further study on this topic using 16S rRNA gene sequencing may reveal potential therapeutic targets within the microbiome to significantly improve current methods of treatment used in the palliative care approach.


Assuntos
Infecções/etiologia , Infecções/terapia , Microbiota , Neoplasias/complicações , Cuidados Paliativos , Terapia Combinada , Gerenciamento Clínico , Humanos , Infecções/diagnóstico , Infecções/epidemiologia , Cuidados Paliativos/métodos , Avaliação de Sintomas , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA